Abstract

We have used counterpropagating radiation from a diode laser to cool and stop a beam of cesium atoms. The laser frequency was chirped to keep it in resonance with the slowing atoms. The same laser was used to probe the resulting velocity distributions. We have cooled more than 1010 atoms/sec to a temperature of 1 K. This is an extremely simple and inexpensive way to manipulate atomic velocities and has a wide range of possible applications.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a collection of relevant articles see W. D. Phillips, ed., Laser Cooled and Trapped Atoms, U.S. Natl. Bur. Stand. U.S. Spec. Publ. 653 (U.S. Government Printing Office, Washington, D.C., 1983).
  2. J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
    [CrossRef] [PubMed]
  3. W. Ertmer, R. Blatt, J. L. Hall, M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
    [CrossRef] [PubMed]
  4. An excellent review of neutral atom cooling and trapping is W. D. Phillips, J. V. Prodan, H. J. Metcalf, J. Opt. Soc. Am. B 2, 1751 (1985).
    [CrossRef]
  5. These lasers are wavelength selected to lase in the range 852 ± 5 nm at 25°C and 10-mW output power.
  6. S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
    [CrossRef] [PubMed]

1985 (4)

J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
[CrossRef] [PubMed]

W. Ertmer, R. Blatt, J. L. Hall, M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

An excellent review of neutral atom cooling and trapping is W. D. Phillips, J. V. Prodan, H. J. Metcalf, J. Opt. Soc. Am. B 2, 1751 (1985).
[CrossRef]

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Ashkin, A.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Bjorkholm, J. E.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Blatt, R.

W. Ertmer, R. Blatt, J. L. Hall, M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

Cable, A.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Chu, S.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Dalibard, J.

J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
[CrossRef] [PubMed]

Ertmer, W.

W. Ertmer, R. Blatt, J. L. Hall, M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

Hall, J. L.

W. Ertmer, R. Blatt, J. L. Hall, M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

Hollberg, L.

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Metcalf, H.

J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
[CrossRef] [PubMed]

Metcalf, H. J.

Migdall, A.

J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
[CrossRef] [PubMed]

Phillips, W. D.

Prodan, J.

J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
[CrossRef] [PubMed]

Prodan, J. V.

So, I.

J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
[CrossRef] [PubMed]

Zhu, M.

W. Ertmer, R. Blatt, J. L. Hall, M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Phys. Rev. Lett. (3)

J. Prodan, A. Migdall, W. D. Phillips, I. So, H. Metcalf, J. Dalibard, Phys. Rev. Lett. 54, 992 (1985).
[CrossRef] [PubMed]

W. Ertmer, R. Blatt, J. L. Hall, M. Zhu, Phys. Rev. Lett. 54, 996 (1985).
[CrossRef] [PubMed]

S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[CrossRef] [PubMed]

Other (2)

For a collection of relevant articles see W. D. Phillips, ed., Laser Cooled and Trapped Atoms, U.S. Natl. Bur. Stand. U.S. Spec. Publ. 653 (U.S. Government Printing Office, Washington, D.C., 1983).

These lasers are wavelength selected to lase in the range 852 ± 5 nm at 25°C and 10-mW output power.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cesium energy-level diagram.

Fig. 2
Fig. 2

Schematic of apparatus.

Fig. 3
Fig. 3

Graph of laser injection current. Each 20-msec laser chirp is followed by a 250-μsec probe period. For ease of viewing, a longer probe period is shown.

Fig. 4
Fig. 4

Slowed atom scans. A–E show various amounts of cooling. F is the Doppler profile with no cooling. The arrows mark zero velocity.

Metrics