Abstract

Optical trapping of dielectric particles by a single-beam gradient force trap was demonstrated for the first reported time. This confirms the concept of negative light pressure due to the gradient force. Trapping was observed over the entire range of particle size from 10 μm to ~25 nm in water. Use of the new trap extends the size range of macroscopic particles accessible to optical trapping and manipulation well into the Rayleigh size regime. Application of this trapping principle to atom trapping is considered.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
    [CrossRef]
  2. A. Ashkin, Science 210, 1081 (1980); V. S. Letokhov, V. G. Minogin, Phys. Rep. 73, 1 (1981).
    [CrossRef] [PubMed]
  3. A. Ashkin, J. P. Gordon, Opt. Lett. 8, 511 (1983).
    [CrossRef] [PubMed]
  4. A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 54, 1245 (1985).
    [CrossRef] [PubMed]
  5. A. Ashkin, J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
    [CrossRef]
  6. P. W. Smith, A. Ashkin, W. J. Tomlinson, Opt. Lett. 6, 284 (1981); and A. Ashkin, J. M. Dziedzic, P. W. Smith, Opt. Lett. 7, 276 (1982).
    [CrossRef] [PubMed]
  7. A. Ashkin, Phys. Rev. Lett. 24, 146 (1970).
    [CrossRef]
  8. G. Roosen, Can. J. Phys. 57, 1260 (1979).
    [CrossRef]
  9. See, for example, M. Kerker, The Scattering of Light (Academic, New York, 1969), p. 37.
  10. W. Heller, J. Chem. Phys. 42, 1609 (1965).
    [CrossRef]
  11. Nalco Chemical Company, Chicago, Illinois; Ludox colloidal silica by DuPont Corporation, Wilmington, Delaware.

1985 (1)

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 54, 1245 (1985).
[CrossRef] [PubMed]

1983 (1)

1981 (1)

1980 (1)

A. Ashkin, Science 210, 1081 (1980); V. S. Letokhov, V. G. Minogin, Phys. Rep. 73, 1 (1981).
[CrossRef] [PubMed]

1979 (1)

G. Roosen, Can. J. Phys. 57, 1260 (1979).
[CrossRef]

1978 (1)

A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
[CrossRef]

1971 (1)

A. Ashkin, J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

1970 (1)

A. Ashkin, Phys. Rev. Lett. 24, 146 (1970).
[CrossRef]

1965 (1)

W. Heller, J. Chem. Phys. 42, 1609 (1965).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 54, 1245 (1985).
[CrossRef] [PubMed]

A. Ashkin, J. P. Gordon, Opt. Lett. 8, 511 (1983).
[CrossRef] [PubMed]

P. W. Smith, A. Ashkin, W. J. Tomlinson, Opt. Lett. 6, 284 (1981); and A. Ashkin, J. M. Dziedzic, P. W. Smith, Opt. Lett. 7, 276 (1982).
[CrossRef] [PubMed]

A. Ashkin, Science 210, 1081 (1980); V. S. Letokhov, V. G. Minogin, Phys. Rep. 73, 1 (1981).
[CrossRef] [PubMed]

A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
[CrossRef]

A. Ashkin, J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

A. Ashkin, Phys. Rev. Lett. 24, 146 (1970).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 54, 1245 (1985).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

Gordon, J. P.

Heller, W.

W. Heller, J. Chem. Phys. 42, 1609 (1965).
[CrossRef]

Kerker, M.

See, for example, M. Kerker, The Scattering of Light (Academic, New York, 1969), p. 37.

Roosen, G.

G. Roosen, Can. J. Phys. 57, 1260 (1979).
[CrossRef]

Smith, P. W.

Tomlinson, W. J.

Appl. Phys. Lett. (1)

A. Ashkin, J. M. Dziedzic, Appl. Phys. Lett. 19, 283 (1971).
[CrossRef]

Can. J. Phys. (1)

G. Roosen, Can. J. Phys. 57, 1260 (1979).
[CrossRef]

J. Chem. Phys. (1)

W. Heller, J. Chem. Phys. 42, 1609 (1965).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (3)

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 54, 1245 (1985).
[CrossRef] [PubMed]

A. Ashkin, Phys. Rev. Lett. 24, 146 (1970).
[CrossRef]

A. Ashkin, Phys. Rev. Lett. 40, 729 (1978).
[CrossRef]

Science (1)

A. Ashkin, Science 210, 1081 (1980); V. S. Letokhov, V. G. Minogin, Phys. Rep. 73, 1 (1981).
[CrossRef] [PubMed]

Other (2)

Nalco Chemical Company, Chicago, Illinois; Ludox colloidal silica by DuPont Corporation, Wilmington, Delaware.

See, for example, M. Kerker, The Scattering of Light (Academic, New York, 1969), p. 37.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

a) Diagram showing the ray optics of a spherical Mie particle trapped in water by the highly convergent light of a single-beam gradient force trap. b) Photograph, taken in fluorescence, of a 10-μm sphere trapped in water, showing the paths of the incident and scattered light rays.

Fig. 2
Fig. 2

Sketch of the basic apparatus used for the optical trapping of Mie and Rayleigh particles in water by means of a single-beam gradient force radiation-pressure trap.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F scat = I 0 c 128 π 5 r 6 3 λ 4 ( m 2 - 1 m 2 + 2 ) 2 n b .
F grad = - n b 2 α E 2 = - n b 3 r 3 2 ( m 2 - 1 m 2 - 2 ) E 2 .
R = F grad F scat = 3 3 64 π 5 n b 2 ( m 2 - 1 m 2 + 2 ) λ 5 r 3 w 0 2 1 ,

Metrics