Abstract

The first reported demonstration of thermal diffusivity measurements using picosecond transient thermoreflectance is described. Although previously reported methods of measuring thermal transport properties of thin films require precise knowledge of the thermal properties of the substrate, this technique permits measurements on films as thin as 100 nm without any evidence of substrate interaction.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. P. Leung, A. C. Tam, Opt. Lett. 9, 93 (1984).
    [Crossref] [PubMed]
  2. A. C. Tam, B. Sullivan, Appl. Phys. Lett. 43, 333 (1983).
    [Crossref]
  3. J. Opsal, A. Rosencwaig, D. L. Willenborg, Appl. Opt. 22, 3169 (1983).
    [Crossref] [PubMed]
  4. A. Rosencwaig, J. Opsal, W. L. Smith, D. L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985).
    [Crossref]
  5. M. Vaez Iravani, H. K. Wickramasinghe, J. Appl. Phys. 58, 122 (1985).
    [Crossref]
  6. J. Baker-Jarvis, R. Inguva, J. Appl. Phys. 57, 1569 (1985).
    [Crossref]
  7. G. L. Eesley, Phys. Rev. Lett. 51, 2140 (1983).
    [Crossref]
  8. G. L. Eesley, Phys. Rev. B 33, 2144 (1986).
    [Crossref]
  9. K. Ujihara, J. Appl. Phys. 43, 2376 (1972).
    [Crossref]
  10. G. L. Eesley, IEEE J. Quantum Electron. QE-17, 1285 (1981).
    [Crossref]
  11. J. H. Bechtel, J. Appl. Phys. 46, 1585 (1975).
    [Crossref]
  12. J. A. Nelder, R. Mead, Computer J. 7, 308 (1965).
  13. C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. (to be published).
  14. J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physics Data: Optical Properties of Metals (Fach-Informations-Zentrum, Freiburg im Breisgau, 1981).
  15. W. G. Driscoll, ed., Handbook of Optics (McGraw-Hill, New York, 1978), Chap. 10.
  16. C. G. Bethea, C. Y. Chen, A. Y. Cho, P. A. Barbinski, B. F. Levine, Appl. Phys. Lett. 42, 682 (1983).
    [Crossref]
  17. D. E. Gray, ed., American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972). The thermal diffusivity was calculated from values of the heat capacity and thermal conductivity interpolated to room temperature.
  18. N. W. Ashcroft, N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, Pa., 1976).

1986 (1)

G. L. Eesley, Phys. Rev. B 33, 2144 (1986).
[Crossref]

1985 (3)

A. Rosencwaig, J. Opsal, W. L. Smith, D. L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985).
[Crossref]

M. Vaez Iravani, H. K. Wickramasinghe, J. Appl. Phys. 58, 122 (1985).
[Crossref]

J. Baker-Jarvis, R. Inguva, J. Appl. Phys. 57, 1569 (1985).
[Crossref]

1984 (1)

1983 (4)

A. C. Tam, B. Sullivan, Appl. Phys. Lett. 43, 333 (1983).
[Crossref]

J. Opsal, A. Rosencwaig, D. L. Willenborg, Appl. Opt. 22, 3169 (1983).
[Crossref] [PubMed]

G. L. Eesley, Phys. Rev. Lett. 51, 2140 (1983).
[Crossref]

C. G. Bethea, C. Y. Chen, A. Y. Cho, P. A. Barbinski, B. F. Levine, Appl. Phys. Lett. 42, 682 (1983).
[Crossref]

1981 (1)

G. L. Eesley, IEEE J. Quantum Electron. QE-17, 1285 (1981).
[Crossref]

1975 (1)

J. H. Bechtel, J. Appl. Phys. 46, 1585 (1975).
[Crossref]

1972 (1)

K. Ujihara, J. Appl. Phys. 43, 2376 (1972).
[Crossref]

1965 (1)

J. A. Nelder, R. Mead, Computer J. 7, 308 (1965).

Ashcroft, N. W.

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, Pa., 1976).

Baker-Jarvis, J.

J. Baker-Jarvis, R. Inguva, J. Appl. Phys. 57, 1569 (1985).
[Crossref]

Barbinski, P. A.

C. G. Bethea, C. Y. Chen, A. Y. Cho, P. A. Barbinski, B. F. Levine, Appl. Phys. Lett. 42, 682 (1983).
[Crossref]

Bechtel, J. H.

J. H. Bechtel, J. Appl. Phys. 46, 1585 (1975).
[Crossref]

Bethea, C. G.

C. G. Bethea, C. Y. Chen, A. Y. Cho, P. A. Barbinski, B. F. Levine, Appl. Phys. Lett. 42, 682 (1983).
[Crossref]

Chen, C. Y.

C. G. Bethea, C. Y. Chen, A. Y. Cho, P. A. Barbinski, B. F. Levine, Appl. Phys. Lett. 42, 682 (1983).
[Crossref]

Cho, A. Y.

C. G. Bethea, C. Y. Chen, A. Y. Cho, P. A. Barbinski, B. F. Levine, Appl. Phys. Lett. 42, 682 (1983).
[Crossref]

Eesley, G. L.

G. L. Eesley, Phys. Rev. B 33, 2144 (1986).
[Crossref]

G. L. Eesley, Phys. Rev. Lett. 51, 2140 (1983).
[Crossref]

G. L. Eesley, IEEE J. Quantum Electron. QE-17, 1285 (1981).
[Crossref]

C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. (to be published).

Inguva, R.

J. Baker-Jarvis, R. Inguva, J. Appl. Phys. 57, 1569 (1985).
[Crossref]

Koch, E. E.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physics Data: Optical Properties of Metals (Fach-Informations-Zentrum, Freiburg im Breisgau, 1981).

Krafka, C.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physics Data: Optical Properties of Metals (Fach-Informations-Zentrum, Freiburg im Breisgau, 1981).

Leung, W. P.

Levine, B. F.

C. G. Bethea, C. Y. Chen, A. Y. Cho, P. A. Barbinski, B. F. Levine, Appl. Phys. Lett. 42, 682 (1983).
[Crossref]

Lynch, D. W.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physics Data: Optical Properties of Metals (Fach-Informations-Zentrum, Freiburg im Breisgau, 1981).

Mead, R.

J. A. Nelder, R. Mead, Computer J. 7, 308 (1965).

Mermin, N. D.

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, Pa., 1976).

Nelder, J. A.

J. A. Nelder, R. Mead, Computer J. 7, 308 (1965).

Opsal, J.

A. Rosencwaig, J. Opsal, W. L. Smith, D. L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985).
[Crossref]

J. Opsal, A. Rosencwaig, D. L. Willenborg, Appl. Opt. 22, 3169 (1983).
[Crossref] [PubMed]

Paddock, C. A.

C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. (to be published).

Rosencwaig, A.

A. Rosencwaig, J. Opsal, W. L. Smith, D. L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985).
[Crossref]

J. Opsal, A. Rosencwaig, D. L. Willenborg, Appl. Opt. 22, 3169 (1983).
[Crossref] [PubMed]

Smith, W. L.

A. Rosencwaig, J. Opsal, W. L. Smith, D. L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985).
[Crossref]

Sullivan, B.

A. C. Tam, B. Sullivan, Appl. Phys. Lett. 43, 333 (1983).
[Crossref]

Tam, A. C.

W. P. Leung, A. C. Tam, Opt. Lett. 9, 93 (1984).
[Crossref] [PubMed]

A. C. Tam, B. Sullivan, Appl. Phys. Lett. 43, 333 (1983).
[Crossref]

Ujihara, K.

K. Ujihara, J. Appl. Phys. 43, 2376 (1972).
[Crossref]

Vaez Iravani, M.

M. Vaez Iravani, H. K. Wickramasinghe, J. Appl. Phys. 58, 122 (1985).
[Crossref]

Weaver, J. H.

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physics Data: Optical Properties of Metals (Fach-Informations-Zentrum, Freiburg im Breisgau, 1981).

Wickramasinghe, H. K.

M. Vaez Iravani, H. K. Wickramasinghe, J. Appl. Phys. 58, 122 (1985).
[Crossref]

Willenborg, D. L.

A. Rosencwaig, J. Opsal, W. L. Smith, D. L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985).
[Crossref]

J. Opsal, A. Rosencwaig, D. L. Willenborg, Appl. Opt. 22, 3169 (1983).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. Rosencwaig, J. Opsal, W. L. Smith, D. L. Willenborg, Appl. Phys. Lett. 46, 1013 (1985).
[Crossref]

A. C. Tam, B. Sullivan, Appl. Phys. Lett. 43, 333 (1983).
[Crossref]

C. G. Bethea, C. Y. Chen, A. Y. Cho, P. A. Barbinski, B. F. Levine, Appl. Phys. Lett. 42, 682 (1983).
[Crossref]

Computer J. (1)

J. A. Nelder, R. Mead, Computer J. 7, 308 (1965).

IEEE J. Quantum Electron. (1)

G. L. Eesley, IEEE J. Quantum Electron. QE-17, 1285 (1981).
[Crossref]

J. Appl. Phys. (4)

J. H. Bechtel, J. Appl. Phys. 46, 1585 (1975).
[Crossref]

K. Ujihara, J. Appl. Phys. 43, 2376 (1972).
[Crossref]

M. Vaez Iravani, H. K. Wickramasinghe, J. Appl. Phys. 58, 122 (1985).
[Crossref]

J. Baker-Jarvis, R. Inguva, J. Appl. Phys. 57, 1569 (1985).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (1)

G. L. Eesley, Phys. Rev. B 33, 2144 (1986).
[Crossref]

Phys. Rev. Lett. (1)

G. L. Eesley, Phys. Rev. Lett. 51, 2140 (1983).
[Crossref]

Other (5)

D. E. Gray, ed., American Institute of Physics Handbook, 3rd ed. (McGraw-Hill, New York, 1972). The thermal diffusivity was calculated from values of the heat capacity and thermal conductivity interpolated to room temperature.

N. W. Ashcroft, N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, Pa., 1976).

C. A. Paddock, G. L. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. (to be published).

J. H. Weaver, C. Krafka, D. W. Lynch, E. E. Koch, Physics Data: Optical Properties of Metals (Fach-Informations-Zentrum, Freiburg im Breisgau, 1981).

W. G. Driscoll, ed., Handbook of Optics (McGraw-Hill, New York, 1978), Chap. 10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

TTR measurement and fitted temporal profile for single-crystal nickel. The long- and short-dashed line represents the theoretical temperature profile, the solid line is the normalized measured change in reflectivity, and the long-dashed line is the measured cross correlation between the pump and probe pulses. The theory is fitted to the data after a 20-psec time delay (vertical line).

Fig. 2
Fig. 2

TTR measurement and fitted temporal profile for evaporated nickel. The long- and short-dashed line represents the theoretical temperature profile, the solid line is the normalized measured change in reflectivity, and the long-dashed line is the measured cross correlation between the pump and probe pulses.

Tables (1)

Tables Icon

Table 1 Absolute and Relative Thermal Diffusivities Determined by TTR Measurements, Relative Electrical Conductivities, and the Calculated Peak Temperature Increase

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C T ( z , t ) t = K 2 T ( z , t ) z 2 + I ( 1 - R ) α e - α z e - ( t / τ ) 2 ,

Metrics