Abstract

Using low-power cw lasers in conjunction with the symmetric and asymmetric nonlinear transverse self-phase modulation imparted by a nematic liquid-crystal film, we have demonstrated two forms of transverse intensity-switching and power-limiting operations. Applications to high-power nanosecond laser are also feasible.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, New York, 1984), Chap. 5 and references therein.
  2. J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, A. E. Kaplan, Opt. Lett. 6, 345 (1981).
    [CrossRef] [PubMed]
  3. I. C. Khoo, Appl. Phys. Lett. 41, 909 (1982); I. C. Khoo, T. H. Liu, P. Y. Yan, S. Shepard, J. Y. Hou, Phys. Rev. A 29, 2756 (1984).
    [CrossRef]
  4. K. Tai, H. M. Gibbs, N. Peyghambarian, A. Mysyrowicz, Opt. Lett. 10, 220 (1985).
    [CrossRef] [PubMed]
  5. M. F. Soileau, W. E. Williams, E. W. Van Stryland, IEEE J. Quantum Electron. 19, 731 (1983); T. F. Boggess, A. L. Smith, S. C. Moss, I. W. Boyd, E. W. Van Stryland, IEEE J. Quantum Electron. QE-21, 488 (1985); J. A. Hermann, J. Opt. Soc. Am. A 1, 729 (1984), and references therein.
    [CrossRef]
  6. A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, L. Chillag, JETP Lett. 32, 158 (1980); S. D. Durbin, S. M. Arakelian, Y. R. Shen, Opt. Lett. 6, 411 (1981).
    [PubMed]
  7. I. C. Khoo, Phys. Rev. A 23, 1636 (1981); Phys. Rev. A 25, 1636 (1982); Phys. Rev. A 26, 1131 (1983); Phys. Rev. A 27, 2747 (1983); see also I. C. Khoo, Y. R. Shen, Opt. Eng. 24, 579 (1985), and references therein.
    [CrossRef]
  8. E. Santamato, Y. R. Shen, Opt. Lett. 9, 564 (1984).
    [CrossRef] [PubMed]
  9. A. E. Kaplan, JETP Lett. 9, 33 (1969); Opt. Lett. 6, 360 (1981).
    [PubMed]
  10. H. Hsiung, L. P. Shi, Y. R. Shen, Phys. Rev. A 30, 1453 (1984).
    [CrossRef]

1985 (1)

1984 (2)

H. Hsiung, L. P. Shi, Y. R. Shen, Phys. Rev. A 30, 1453 (1984).
[CrossRef]

E. Santamato, Y. R. Shen, Opt. Lett. 9, 564 (1984).
[CrossRef] [PubMed]

1983 (1)

M. F. Soileau, W. E. Williams, E. W. Van Stryland, IEEE J. Quantum Electron. 19, 731 (1983); T. F. Boggess, A. L. Smith, S. C. Moss, I. W. Boyd, E. W. Van Stryland, IEEE J. Quantum Electron. QE-21, 488 (1985); J. A. Hermann, J. Opt. Soc. Am. A 1, 729 (1984), and references therein.
[CrossRef]

1982 (1)

I. C. Khoo, Appl. Phys. Lett. 41, 909 (1982); I. C. Khoo, T. H. Liu, P. Y. Yan, S. Shepard, J. Y. Hou, Phys. Rev. A 29, 2756 (1984).
[CrossRef]

1981 (2)

I. C. Khoo, Phys. Rev. A 23, 1636 (1981); Phys. Rev. A 25, 1636 (1982); Phys. Rev. A 26, 1131 (1983); Phys. Rev. A 27, 2747 (1983); see also I. C. Khoo, Y. R. Shen, Opt. Eng. 24, 579 (1985), and references therein.
[CrossRef]

J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, A. E. Kaplan, Opt. Lett. 6, 345 (1981).
[CrossRef] [PubMed]

1980 (1)

A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, L. Chillag, JETP Lett. 32, 158 (1980); S. D. Durbin, S. M. Arakelian, Y. R. Shen, Opt. Lett. 6, 411 (1981).
[PubMed]

1969 (1)

A. E. Kaplan, JETP Lett. 9, 33 (1969); Opt. Lett. 6, 360 (1981).
[PubMed]

Bjorkholm, J. E.

Chillag, L.

A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, L. Chillag, JETP Lett. 32, 158 (1980); S. D. Durbin, S. M. Arakelian, Y. R. Shen, Opt. Lett. 6, 411 (1981).
[PubMed]

Gibbs, H. M.

Hsiung, H.

H. Hsiung, L. P. Shi, Y. R. Shen, Phys. Rev. A 30, 1453 (1984).
[CrossRef]

Kaplan, A. E.

Khoo, I. C.

I. C. Khoo, Appl. Phys. Lett. 41, 909 (1982); I. C. Khoo, T. H. Liu, P. Y. Yan, S. Shepard, J. Y. Hou, Phys. Rev. A 29, 2756 (1984).
[CrossRef]

I. C. Khoo, Phys. Rev. A 23, 1636 (1981); Phys. Rev. A 25, 1636 (1982); Phys. Rev. A 26, 1131 (1983); Phys. Rev. A 27, 2747 (1983); see also I. C. Khoo, Y. R. Shen, Opt. Eng. 24, 579 (1985), and references therein.
[CrossRef]

Kitaeva, V. F.

A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, L. Chillag, JETP Lett. 32, 158 (1980); S. D. Durbin, S. M. Arakelian, Y. R. Shen, Opt. Lett. 6, 411 (1981).
[PubMed]

Kroo, N.

A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, L. Chillag, JETP Lett. 32, 158 (1980); S. D. Durbin, S. M. Arakelian, Y. R. Shen, Opt. Lett. 6, 411 (1981).
[PubMed]

Mysyrowicz, A.

Peyghambarian, N.

Reintjes, J. F.

See, for example, J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, New York, 1984), Chap. 5 and references therein.

Santamato, E.

Shen, Y. R.

E. Santamato, Y. R. Shen, Opt. Lett. 9, 564 (1984).
[CrossRef] [PubMed]

H. Hsiung, L. P. Shi, Y. R. Shen, Phys. Rev. A 30, 1453 (1984).
[CrossRef]

Shi, L. P.

H. Hsiung, L. P. Shi, Y. R. Shen, Phys. Rev. A 30, 1453 (1984).
[CrossRef]

Smith, P. W.

Sobolev, N. N.

A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, L. Chillag, JETP Lett. 32, 158 (1980); S. D. Durbin, S. M. Arakelian, Y. R. Shen, Opt. Lett. 6, 411 (1981).
[PubMed]

Soileau, M. F.

M. F. Soileau, W. E. Williams, E. W. Van Stryland, IEEE J. Quantum Electron. 19, 731 (1983); T. F. Boggess, A. L. Smith, S. C. Moss, I. W. Boyd, E. W. Van Stryland, IEEE J. Quantum Electron. QE-21, 488 (1985); J. A. Hermann, J. Opt. Soc. Am. A 1, 729 (1984), and references therein.
[CrossRef]

Tai, K.

Tomlinson, W. J.

Van Stryland, E. W.

M. F. Soileau, W. E. Williams, E. W. Van Stryland, IEEE J. Quantum Electron. 19, 731 (1983); T. F. Boggess, A. L. Smith, S. C. Moss, I. W. Boyd, E. W. Van Stryland, IEEE J. Quantum Electron. QE-21, 488 (1985); J. A. Hermann, J. Opt. Soc. Am. A 1, 729 (1984), and references therein.
[CrossRef]

Williams, W. E.

M. F. Soileau, W. E. Williams, E. W. Van Stryland, IEEE J. Quantum Electron. 19, 731 (1983); T. F. Boggess, A. L. Smith, S. C. Moss, I. W. Boyd, E. W. Van Stryland, IEEE J. Quantum Electron. QE-21, 488 (1985); J. A. Hermann, J. Opt. Soc. Am. A 1, 729 (1984), and references therein.
[CrossRef]

Zolotko, A. S.

A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, L. Chillag, JETP Lett. 32, 158 (1980); S. D. Durbin, S. M. Arakelian, Y. R. Shen, Opt. Lett. 6, 411 (1981).
[PubMed]

Appl. Phys. Lett. (1)

I. C. Khoo, Appl. Phys. Lett. 41, 909 (1982); I. C. Khoo, T. H. Liu, P. Y. Yan, S. Shepard, J. Y. Hou, Phys. Rev. A 29, 2756 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. F. Soileau, W. E. Williams, E. W. Van Stryland, IEEE J. Quantum Electron. 19, 731 (1983); T. F. Boggess, A. L. Smith, S. C. Moss, I. W. Boyd, E. W. Van Stryland, IEEE J. Quantum Electron. QE-21, 488 (1985); J. A. Hermann, J. Opt. Soc. Am. A 1, 729 (1984), and references therein.
[CrossRef]

JETP Lett. (2)

A. S. Zolotko, V. F. Kitaeva, N. Kroo, N. N. Sobolev, L. Chillag, JETP Lett. 32, 158 (1980); S. D. Durbin, S. M. Arakelian, Y. R. Shen, Opt. Lett. 6, 411 (1981).
[PubMed]

A. E. Kaplan, JETP Lett. 9, 33 (1969); Opt. Lett. 6, 360 (1981).
[PubMed]

Opt. Lett. (3)

Phys. Rev. A (2)

H. Hsiung, L. P. Shi, Y. R. Shen, Phys. Rev. A 30, 1453 (1984).
[CrossRef]

I. C. Khoo, Phys. Rev. A 23, 1636 (1981); Phys. Rev. A 25, 1636 (1982); Phys. Rev. A 26, 1131 (1983); Phys. Rev. A 27, 2747 (1983); see also I. C. Khoo, Y. R. Shen, Opt. Eng. 24, 579 (1985), and references therein.
[CrossRef]

Other (1)

See, for example, J. F. Reintjes, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, New York, 1984), Chap. 5 and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup for symmetric and asymmetric (with the use of the opaque object to half block the laser) self-phase-modulation effect. Symmetric self-phase modulation gives rise to self-focusing and divergence of the laser at the detector plane at high power, as shown by the dashed lines. Also shown by dashed lines is the self-bending effect associated with asymmetric self-phase modulation.

Fig. 2
Fig. 2

Optical propagation in a homeotropic nematic crystal film.

Fig. 3
Fig. 3

(a) Photograph of the laser at the detector plane at low power. (b) Photograph of the laser at higher power showing ring formation and increased divergence for the case when the incident laser has a positive radius of curvature. The central portion remains bright for the full laser-power range. (c) Photograph of the laser at the detector plane at high power for the case when the incident laser has a negative radius of curvature. The central portion tends to be dark for the entire power range.

Fig. 4
Fig. 4

Plot of the detector power versus the incident laser power showing power-limiting effect.

Fig. 5
Fig. 5

(a) Photograph of the laser spot on the observation plane at low power. Black line at center is for reference purpose. (b) Same as in (a), but at high power. The beam deflects by a displacement of about twice the laser-beam waist.

Fig. 6
Fig. 6

Photograph of the increased divergence and ring formation due to nanosecond laser-induced self-phase modulation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δ ( r ) ~ Δ π 2 4 I op ( r ) I F sin 2 2 β ,
δ n ( r ) = n 2 I ( r ) = ( Δ π 2 / 4 n I F ) sin 2 2 β I op ( r ) .
I ( r , z ) = ( 2 π λ z ) 2 | 0 I 0 ( r ) d r r J 0 ( 2 π r r 0 / λ z ) × exp { - i k [ r 2 2 z + r 2 2 R + δ n ( r ) d ] } | 2 ;

Metrics