Abstract

The effect of dispersive elements, such as intracavity étalons and multipass interferometric output couplers, on the mode separation of a resonator has been studied. We demonstrate, both theoretically and experimentally in a TEA CO2 laser, that the separation of the two adjacent longitudinal modes closest to the interferometer reflection peak is strongly reduced when a high-finesse interferometer is used as an output coupler. This effect must be taken into account in the design of single-mode lasers.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. D. Bhawalkar, L. G. Nair, S. C. Mehendale, Opt. Commun. 23, 427 (1977).
    [CrossRef]
  2. G. Giuliani, E. Palange, S. Loreti, G. Salvetti, Opt. Lett. 10, 600 (1985).
    [CrossRef] [PubMed]
  3. P. W. Smith, Proc. IEEE 60, 422 (1972).
    [CrossRef]
  4. G. Giuliani, E. Palange, G. Salvetti, Opt. Lett. 9, 393 (1984).
    [CrossRef] [PubMed]
  5. V. Y. Petrunkin, M. G. Vysotskii, R. I. Okunev, Sov. Phys. Tech. Phys. 13, 1591 (1969).
  6. R. Damaschini, C. R. Acad. Sci. Paris 268B, 1169 (1969).
  7. E. Armandillo, P. V. M. Lopatriello, G. Giuliani, Opt. Lett. 9, 327 (1984).
    [CrossRef] [PubMed]
  8. G. Giuliani, E. Palange, G. Salvetti, J. Opt. Soc. Am. B (to be published).

1985 (1)

1984 (2)

1977 (1)

D. D. Bhawalkar, L. G. Nair, S. C. Mehendale, Opt. Commun. 23, 427 (1977).
[CrossRef]

1972 (1)

P. W. Smith, Proc. IEEE 60, 422 (1972).
[CrossRef]

1969 (2)

V. Y. Petrunkin, M. G. Vysotskii, R. I. Okunev, Sov. Phys. Tech. Phys. 13, 1591 (1969).

R. Damaschini, C. R. Acad. Sci. Paris 268B, 1169 (1969).

Armandillo, E.

Bhawalkar, D. D.

D. D. Bhawalkar, L. G. Nair, S. C. Mehendale, Opt. Commun. 23, 427 (1977).
[CrossRef]

Damaschini, R.

R. Damaschini, C. R. Acad. Sci. Paris 268B, 1169 (1969).

Giuliani, G.

Lopatriello, P. V. M.

Loreti, S.

Mehendale, S. C.

D. D. Bhawalkar, L. G. Nair, S. C. Mehendale, Opt. Commun. 23, 427 (1977).
[CrossRef]

Nair, L. G.

D. D. Bhawalkar, L. G. Nair, S. C. Mehendale, Opt. Commun. 23, 427 (1977).
[CrossRef]

Okunev, R. I.

V. Y. Petrunkin, M. G. Vysotskii, R. I. Okunev, Sov. Phys. Tech. Phys. 13, 1591 (1969).

Palange, E.

Petrunkin, V. Y.

V. Y. Petrunkin, M. G. Vysotskii, R. I. Okunev, Sov. Phys. Tech. Phys. 13, 1591 (1969).

Salvetti, G.

Smith, P. W.

P. W. Smith, Proc. IEEE 60, 422 (1972).
[CrossRef]

Vysotskii, M. G.

V. Y. Petrunkin, M. G. Vysotskii, R. I. Okunev, Sov. Phys. Tech. Phys. 13, 1591 (1969).

C. R. Acad. Sci. Paris (1)

R. Damaschini, C. R. Acad. Sci. Paris 268B, 1169 (1969).

Opt. Commun. (1)

D. D. Bhawalkar, L. G. Nair, S. C. Mehendale, Opt. Commun. 23, 427 (1977).
[CrossRef]

Opt. Lett. (3)

Proc. IEEE (1)

P. W. Smith, Proc. IEEE 60, 422 (1972).
[CrossRef]

Sov. Phys. Tech. Phys. (1)

V. Y. Petrunkin, M. G. Vysotskii, R. I. Okunev, Sov. Phys. Tech. Phys. 13, 1591 (1969).

Other (1)

G. Giuliani, E. Palange, G. Salvetti, J. Opt. Soc. Am. B (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Relative spectral position of two adjacent longitudinal modes and the dispersive element transmission (or reflection) peak.

Fig. 2
Fig. 2

a, Schematic diagram of a laser cavity with a multiple-mirror interferometric output coupler; b, experimental apparatus of the TEA CO2 laser equipped with a MGI used for dispersion-pulling measurements.

Fig. 3
Fig. 3

Laser output signal showing frequency beating between two longitudinal modes in a cavity terminating in a MGI. Horizontal scale, 10 nsec/division.

Tables (1)

Tables Icon

Table 1 Measured and Calculated Values of the Adjacent Longitudinal Mode Separation for a Laser Cavity Terminating in a MGI

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ k L = 1 L eq { π - [ ϕ ( Δ k L - Δ k 1 ) + ϕ ( Δ k 1 ) ] } ,
L eq L + d ( n - 1 ) .
ϕ ( x ) = tan - 1 [ sin ( 2 x L et ) 1 R et - cos ( 2 x L et ) ] ,
Δ k L = 1 L eq { π - ½ [ ϕ ( Δ k L - Δ k 1 ) + ϕ ( Δ k 1 ) ] } ,
L eq = L c + l 1
ϕ ( x ) = tan - 1 [ sin [ 2 x ( l 1 + l 2 ) ] 1 R - cos [ 2 x ( l 1 + l 2 ) ] ] ,
Δ k L = π - ½ [ ϕ ( Δ k L - Δ k 1 ) + ϕ ( Δ k 1 ) ] L eq + 4 π 2 p 2 k 0 4 cos 2 θ i ( r 3 - L c cos 2 θ i ) [ ( k 0 - 3 Δ k 1 ) Δ k L - ( 2 k 0 - 3 Δ k 1 ) Δ k 1 + Δ k L 2 ] ,

Metrics