Abstract

The soft-x-ray and XUV emission from laser-produced plasmas produced by 300-mJ pulses from 1.06- and 10.6-μm lasers was compared both by measuring the absorption due to inner-shell photoionization in Cd vapor in the 10–71-nm region and by directly observing the plasma emission in the 35–75-nm region. The results indicate that a 10.6-μm laser can be a more efficient pumping source for a photoionization laser than a 1.06-μm laser in the nanosecond pulse regime at low laser intensities.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. P. Hughes, Plasmas and Laser Light (Wiley, New York, 1975), pp. 287–293.
  2. R. G. Caro, J. C. Wang, R. W. Falcone, J. F. Young, S. E. Harris, Appl. Phys. Lett. 42, 9 (1983).
    [CrossRef]
  3. W. T. Silfvast, J. J. Macklin, O. R. Wood, Opt. Lett. 8, 551 (1983).
    [CrossRef] [PubMed]
  4. H. Lundberg, J. J. Macklin, W. T. Silfvast, O. R. Wood, Appl. Phys. Lett. 45, 335 (1984).
    [CrossRef]
  5. W. T. Silfvast, O. R. Wood, J. J. Macklin, H. Lundberg, in Laser Techniques in the Extreme Ultraviolet, S. E. Harris, T. B. Lucatorto, eds. (American Institute of Physics, New York, 1981), pp. 427–436.
  6. P. K. Carroll, E. T. Kennedy, Comtemp. Phys. 22, 61 (1981).
    [CrossRef]
  7. R. B. Cairns, H. Harrison, R. I. Schoen, J. Chem. Phys. 51, 5440 (1969).
    [CrossRef]
  8. J. Martineau, S. Repoux, M. Rabeau, G. Nierat, M. Rostaing, Opt. Commun. 12, 307 (1974).
    [CrossRef]
  9. R. Ramis, J. R. Sanmartin, Nucl. Fusion 23, 739 (1983).
    [CrossRef]
  10. C. E. Max, “Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser fusion targets,” Lawrence Livermore National Laboratory Rep. No. UCRL-53107 (1981).

1984 (1)

H. Lundberg, J. J. Macklin, W. T. Silfvast, O. R. Wood, Appl. Phys. Lett. 45, 335 (1984).
[CrossRef]

1983 (3)

R. Ramis, J. R. Sanmartin, Nucl. Fusion 23, 739 (1983).
[CrossRef]

R. G. Caro, J. C. Wang, R. W. Falcone, J. F. Young, S. E. Harris, Appl. Phys. Lett. 42, 9 (1983).
[CrossRef]

W. T. Silfvast, J. J. Macklin, O. R. Wood, Opt. Lett. 8, 551 (1983).
[CrossRef] [PubMed]

1981 (1)

P. K. Carroll, E. T. Kennedy, Comtemp. Phys. 22, 61 (1981).
[CrossRef]

1974 (1)

J. Martineau, S. Repoux, M. Rabeau, G. Nierat, M. Rostaing, Opt. Commun. 12, 307 (1974).
[CrossRef]

1969 (1)

R. B. Cairns, H. Harrison, R. I. Schoen, J. Chem. Phys. 51, 5440 (1969).
[CrossRef]

Cairns, R. B.

R. B. Cairns, H. Harrison, R. I. Schoen, J. Chem. Phys. 51, 5440 (1969).
[CrossRef]

Caro, R. G.

R. G. Caro, J. C. Wang, R. W. Falcone, J. F. Young, S. E. Harris, Appl. Phys. Lett. 42, 9 (1983).
[CrossRef]

Carroll, P. K.

P. K. Carroll, E. T. Kennedy, Comtemp. Phys. 22, 61 (1981).
[CrossRef]

Falcone, R. W.

R. G. Caro, J. C. Wang, R. W. Falcone, J. F. Young, S. E. Harris, Appl. Phys. Lett. 42, 9 (1983).
[CrossRef]

Harris, S. E.

R. G. Caro, J. C. Wang, R. W. Falcone, J. F. Young, S. E. Harris, Appl. Phys. Lett. 42, 9 (1983).
[CrossRef]

Harrison, H.

R. B. Cairns, H. Harrison, R. I. Schoen, J. Chem. Phys. 51, 5440 (1969).
[CrossRef]

Hughes, T. P.

T. P. Hughes, Plasmas and Laser Light (Wiley, New York, 1975), pp. 287–293.

Kennedy, E. T.

P. K. Carroll, E. T. Kennedy, Comtemp. Phys. 22, 61 (1981).
[CrossRef]

Lundberg, H.

H. Lundberg, J. J. Macklin, W. T. Silfvast, O. R. Wood, Appl. Phys. Lett. 45, 335 (1984).
[CrossRef]

W. T. Silfvast, O. R. Wood, J. J. Macklin, H. Lundberg, in Laser Techniques in the Extreme Ultraviolet, S. E. Harris, T. B. Lucatorto, eds. (American Institute of Physics, New York, 1981), pp. 427–436.

Macklin, J. J.

H. Lundberg, J. J. Macklin, W. T. Silfvast, O. R. Wood, Appl. Phys. Lett. 45, 335 (1984).
[CrossRef]

W. T. Silfvast, J. J. Macklin, O. R. Wood, Opt. Lett. 8, 551 (1983).
[CrossRef] [PubMed]

W. T. Silfvast, O. R. Wood, J. J. Macklin, H. Lundberg, in Laser Techniques in the Extreme Ultraviolet, S. E. Harris, T. B. Lucatorto, eds. (American Institute of Physics, New York, 1981), pp. 427–436.

Martineau, J.

J. Martineau, S. Repoux, M. Rabeau, G. Nierat, M. Rostaing, Opt. Commun. 12, 307 (1974).
[CrossRef]

Max, C. E.

C. E. Max, “Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser fusion targets,” Lawrence Livermore National Laboratory Rep. No. UCRL-53107 (1981).

Nierat, G.

J. Martineau, S. Repoux, M. Rabeau, G. Nierat, M. Rostaing, Opt. Commun. 12, 307 (1974).
[CrossRef]

Rabeau, M.

J. Martineau, S. Repoux, M. Rabeau, G. Nierat, M. Rostaing, Opt. Commun. 12, 307 (1974).
[CrossRef]

Ramis, R.

R. Ramis, J. R. Sanmartin, Nucl. Fusion 23, 739 (1983).
[CrossRef]

Repoux, S.

J. Martineau, S. Repoux, M. Rabeau, G. Nierat, M. Rostaing, Opt. Commun. 12, 307 (1974).
[CrossRef]

Rostaing, M.

J. Martineau, S. Repoux, M. Rabeau, G. Nierat, M. Rostaing, Opt. Commun. 12, 307 (1974).
[CrossRef]

Sanmartin, J. R.

R. Ramis, J. R. Sanmartin, Nucl. Fusion 23, 739 (1983).
[CrossRef]

Schoen, R. I.

R. B. Cairns, H. Harrison, R. I. Schoen, J. Chem. Phys. 51, 5440 (1969).
[CrossRef]

Silfvast, W. T.

H. Lundberg, J. J. Macklin, W. T. Silfvast, O. R. Wood, Appl. Phys. Lett. 45, 335 (1984).
[CrossRef]

W. T. Silfvast, J. J. Macklin, O. R. Wood, Opt. Lett. 8, 551 (1983).
[CrossRef] [PubMed]

W. T. Silfvast, O. R. Wood, J. J. Macklin, H. Lundberg, in Laser Techniques in the Extreme Ultraviolet, S. E. Harris, T. B. Lucatorto, eds. (American Institute of Physics, New York, 1981), pp. 427–436.

Wang, J. C.

R. G. Caro, J. C. Wang, R. W. Falcone, J. F. Young, S. E. Harris, Appl. Phys. Lett. 42, 9 (1983).
[CrossRef]

Wood, O. R.

H. Lundberg, J. J. Macklin, W. T. Silfvast, O. R. Wood, Appl. Phys. Lett. 45, 335 (1984).
[CrossRef]

W. T. Silfvast, J. J. Macklin, O. R. Wood, Opt. Lett. 8, 551 (1983).
[CrossRef] [PubMed]

W. T. Silfvast, O. R. Wood, J. J. Macklin, H. Lundberg, in Laser Techniques in the Extreme Ultraviolet, S. E. Harris, T. B. Lucatorto, eds. (American Institute of Physics, New York, 1981), pp. 427–436.

Young, J. F.

R. G. Caro, J. C. Wang, R. W. Falcone, J. F. Young, S. E. Harris, Appl. Phys. Lett. 42, 9 (1983).
[CrossRef]

Appl. Phys. Lett. (2)

H. Lundberg, J. J. Macklin, W. T. Silfvast, O. R. Wood, Appl. Phys. Lett. 45, 335 (1984).
[CrossRef]

R. G. Caro, J. C. Wang, R. W. Falcone, J. F. Young, S. E. Harris, Appl. Phys. Lett. 42, 9 (1983).
[CrossRef]

Comtemp. Phys. (1)

P. K. Carroll, E. T. Kennedy, Comtemp. Phys. 22, 61 (1981).
[CrossRef]

J. Chem. Phys. (1)

R. B. Cairns, H. Harrison, R. I. Schoen, J. Chem. Phys. 51, 5440 (1969).
[CrossRef]

Nucl. Fusion (1)

R. Ramis, J. R. Sanmartin, Nucl. Fusion 23, 739 (1983).
[CrossRef]

Opt. Commun. (1)

J. Martineau, S. Repoux, M. Rabeau, G. Nierat, M. Rostaing, Opt. Commun. 12, 307 (1974).
[CrossRef]

Opt. Lett. (1)

Other (3)

C. E. Max, “Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser fusion targets,” Lawrence Livermore National Laboratory Rep. No. UCRL-53107 (1981).

T. P. Hughes, Plasmas and Laser Light (Wiley, New York, 1975), pp. 287–293.

W. T. Silfvast, O. R. Wood, J. J. Macklin, H. Lundberg, in Laser Techniques in the Extreme Ultraviolet, S. E. Harris, T. B. Lucatorto, eds. (American Institute of Physics, New York, 1981), pp. 427–436.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Measured GL product at various distances from XUV source for 300 mJ of input energy from 1.06-μm (open circles) and 10.6-μm (filled circles) sources together with calculated GL product (solid curves).

Fig. 2
Fig. 2

Relative intensity as a function of wavelength produced by 300 mJ of input energy from 1.06-μm (open circles) and 10.6-μm (filled circles) sources.

Fig. 3
Fig. 3

Spectral radiance at 50 nm as a function of input energy from 1.06-μm (open circles) and 10.6-μm (filled circles) sources together with calculated spectral radiance (solid curves).

Metrics