Abstract

We report the first self-consistent numerical model to our knowledge of the injection-locking process in a gain-guided diode-laser array. This model reproduces two essential features of device behavior seen in recent experiments: (1) the single-lobed far-field output beam that results from injecting a single end-element of the array and (2) the linear dependence of the far-field beam angle on injection frequency. This angular scanning of the far-field beam angle can be understood on the basis of a simple plane-wave picture in which a change in the injection frequency leads to a tilt of the wave front in the diode-laser array in order to maintain the Fabry–Perot resonance condition.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Kapon, C. Lindsey, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 200 (1984).
    [CrossRef]
  2. C. P. Lindsey, E. Kapon, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 722 (1984).
    [CrossRef]
  3. L. Goldberg, H. F. Taylor, J. F. Weller, D. R. Scifres, Appl. Phys. Lett. 46, 236 (1985).
    [CrossRef]
  4. J. P. Hohimer, A. Owyoung, G. H. Hadley, Appl. Phys. Lett. 47, 1244 (1985).
    [CrossRef]
  5. E. Kapon, J. Katz, A. Yariv, Opt. Lett. 10, 125 (1984).
    [CrossRef]
  6. G. P. Agrawal, J. Appl. Phys. 56, 3100 (1984).
    [CrossRef]
  7. G. P. Agrawal, J. Appl. Phys. 58, 2922 (1985).
    [CrossRef]
  8. J. E. Epler, N. Holonyak, R. D. Burnham, T. L. Paoli, R. L. Thornton, M. M. Blouke, Appl. Phys. Lett. 47, 7 (1985).
    [CrossRef]

1985 (4)

L. Goldberg, H. F. Taylor, J. F. Weller, D. R. Scifres, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

J. P. Hohimer, A. Owyoung, G. H. Hadley, Appl. Phys. Lett. 47, 1244 (1985).
[CrossRef]

G. P. Agrawal, J. Appl. Phys. 58, 2922 (1985).
[CrossRef]

J. E. Epler, N. Holonyak, R. D. Burnham, T. L. Paoli, R. L. Thornton, M. M. Blouke, Appl. Phys. Lett. 47, 7 (1985).
[CrossRef]

1984 (4)

E. Kapon, J. Katz, A. Yariv, Opt. Lett. 10, 125 (1984).
[CrossRef]

G. P. Agrawal, J. Appl. Phys. 56, 3100 (1984).
[CrossRef]

E. Kapon, C. Lindsey, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 200 (1984).
[CrossRef]

C. P. Lindsey, E. Kapon, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 722 (1984).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, J. Appl. Phys. 58, 2922 (1985).
[CrossRef]

G. P. Agrawal, J. Appl. Phys. 56, 3100 (1984).
[CrossRef]

Blouke, M. M.

J. E. Epler, N. Holonyak, R. D. Burnham, T. L. Paoli, R. L. Thornton, M. M. Blouke, Appl. Phys. Lett. 47, 7 (1985).
[CrossRef]

Burnham, R. D.

J. E. Epler, N. Holonyak, R. D. Burnham, T. L. Paoli, R. L. Thornton, M. M. Blouke, Appl. Phys. Lett. 47, 7 (1985).
[CrossRef]

Epler, J. E.

J. E. Epler, N. Holonyak, R. D. Burnham, T. L. Paoli, R. L. Thornton, M. M. Blouke, Appl. Phys. Lett. 47, 7 (1985).
[CrossRef]

Goldberg, L.

L. Goldberg, H. F. Taylor, J. F. Weller, D. R. Scifres, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

Hadley, G. H.

J. P. Hohimer, A. Owyoung, G. H. Hadley, Appl. Phys. Lett. 47, 1244 (1985).
[CrossRef]

Hohimer, J. P.

J. P. Hohimer, A. Owyoung, G. H. Hadley, Appl. Phys. Lett. 47, 1244 (1985).
[CrossRef]

Holonyak, N.

J. E. Epler, N. Holonyak, R. D. Burnham, T. L. Paoli, R. L. Thornton, M. M. Blouke, Appl. Phys. Lett. 47, 7 (1985).
[CrossRef]

Kapon, E.

E. Kapon, C. Lindsey, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 200 (1984).
[CrossRef]

E. Kapon, J. Katz, A. Yariv, Opt. Lett. 10, 125 (1984).
[CrossRef]

C. P. Lindsey, E. Kapon, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 722 (1984).
[CrossRef]

Katz, J.

C. P. Lindsey, E. Kapon, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 722 (1984).
[CrossRef]

E. Kapon, J. Katz, A. Yariv, Opt. Lett. 10, 125 (1984).
[CrossRef]

E. Kapon, C. Lindsey, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 200 (1984).
[CrossRef]

Lindsey, C.

E. Kapon, C. Lindsey, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 200 (1984).
[CrossRef]

Lindsey, C. P.

C. P. Lindsey, E. Kapon, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 722 (1984).
[CrossRef]

Margalit, S.

C. P. Lindsey, E. Kapon, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 722 (1984).
[CrossRef]

E. Kapon, C. Lindsey, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 200 (1984).
[CrossRef]

Owyoung, A.

J. P. Hohimer, A. Owyoung, G. H. Hadley, Appl. Phys. Lett. 47, 1244 (1985).
[CrossRef]

Paoli, T. L.

J. E. Epler, N. Holonyak, R. D. Burnham, T. L. Paoli, R. L. Thornton, M. M. Blouke, Appl. Phys. Lett. 47, 7 (1985).
[CrossRef]

Scifres, D. R.

L. Goldberg, H. F. Taylor, J. F. Weller, D. R. Scifres, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

Taylor, H. F.

L. Goldberg, H. F. Taylor, J. F. Weller, D. R. Scifres, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

Thornton, R. L.

J. E. Epler, N. Holonyak, R. D. Burnham, T. L. Paoli, R. L. Thornton, M. M. Blouke, Appl. Phys. Lett. 47, 7 (1985).
[CrossRef]

Weller, J. F.

L. Goldberg, H. F. Taylor, J. F. Weller, D. R. Scifres, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

Yariv, A.

E. Kapon, J. Katz, A. Yariv, Opt. Lett. 10, 125 (1984).
[CrossRef]

E. Kapon, C. Lindsey, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 200 (1984).
[CrossRef]

C. P. Lindsey, E. Kapon, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 722 (1984).
[CrossRef]

Appl. Phys. Lett. (5)

E. Kapon, C. Lindsey, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 200 (1984).
[CrossRef]

C. P. Lindsey, E. Kapon, J. Katz, S. Margalit, A. Yariv, Appl. Phys. Lett. 45, 722 (1984).
[CrossRef]

L. Goldberg, H. F. Taylor, J. F. Weller, D. R. Scifres, Appl. Phys. Lett. 46, 236 (1985).
[CrossRef]

J. P. Hohimer, A. Owyoung, G. H. Hadley, Appl. Phys. Lett. 47, 1244 (1985).
[CrossRef]

J. E. Epler, N. Holonyak, R. D. Burnham, T. L. Paoli, R. L. Thornton, M. M. Blouke, Appl. Phys. Lett. 47, 7 (1985).
[CrossRef]

J. Appl. Phys. (2)

G. P. Agrawal, J. Appl. Phys. 56, 3100 (1984).
[CrossRef]

G. P. Agrawal, J. Appl. Phys. 58, 2922 (1985).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Measured angular position of the single far-field lobe at the injected frequency versus detuning frequency for several injected powers. The solid curve shown is for the numerical model predictions at 1- and 4-mW intracavity power.

Fig. 2
Fig. 2

(a) Calculated near-field patterns at the injected frequency for three different injection frequencies. The curves have been normalized to the same peak intensity. Stripe positions are indicated by rectangles, and the injection position by an arrow. (b) Corresponding far-field patterns at the injected frequency. The curves have been normalized to the same peak intensity. (c) Corresponding injected frequency phase profiles at the exit facet.

Fig. 3
Fig. 3

Schematic drawing of the diode array cavity shown normal to the plane of the active layer. The propagation-constant component kz must remain constant as the frequency changes to preserve the cavity-resonance condition at the same mode number.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2 k z L = 2 m π
d θ = - n 2 λ 0 θ d λ 0 ,

Metrics