Abstract

We present the first reported optical second-harmonic microscope images of a biological sample—rattail tendon—and discuss, also for the first time, the need to distinguish between coherent and incoherent second-harmonic imaging. Our data show that the currently unexplained macroscopic polar order of this classic representative of connective tissue is due both to a coherent network containing a large number of fine, polar, filamentlike structures that permeate the entire tendon volume and to a small number of intensely polar surface patches.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. R. Sheppard, R. Kompfner, Appl. Opt. 17, 2879 (1978); J. N. Garraway, C. J. R. Sheppard, Opt. Quantum Electron. 10, 435 (1978); C. J. R. Sheppard, Proc. Soc. Photo-Opt. Instrum. Eng. 368, 88 (1983).
    [CrossRef] [PubMed]
  2. E. Fukada, I. Yasuda, Jpn. J. Appl. Phys. 3, 117 (1964).
    [CrossRef]
  3. S. B. Lang, Nature 212, 704 (1966).
    [CrossRef]
  4. H. Athenstaedt, Nature 228, 830 (1970); Ann. N.Y. Acad. Sci. 238, 68 (1974).
    [CrossRef] [PubMed]
  5. J. C. Anderson, C. Eriksson, Nature 218, 166 (1968).
    [CrossRef] [PubMed]
  6. J. F. Nye, Physical Properties of Crystals (Oxford U. Press, London, 1964).
  7. W. Traub, K. A. Piez, Adv. Prot. Chem. 25, 243 (1971).
    [CrossRef]
  8. D. A. D. Parry, A. S. Craig, Biopolymers 16, 1015 (1977); Biopolymers 17, 843 (1978).
    [CrossRef] [PubMed]
  9. S. Roth, I. Freund, Opt. Commun. 33, 292 (1980); Biopolymers 20, 1271 (1981).
    [CrossRef] [PubMed]
  10. S. Cusack, A. Miller, J. Mol. Biol. 135, 292 (1980).

1980

S. Roth, I. Freund, Opt. Commun. 33, 292 (1980); Biopolymers 20, 1271 (1981).
[CrossRef] [PubMed]

S. Cusack, A. Miller, J. Mol. Biol. 135, 292 (1980).

1978

1977

D. A. D. Parry, A. S. Craig, Biopolymers 16, 1015 (1977); Biopolymers 17, 843 (1978).
[CrossRef] [PubMed]

1971

W. Traub, K. A. Piez, Adv. Prot. Chem. 25, 243 (1971).
[CrossRef]

1970

H. Athenstaedt, Nature 228, 830 (1970); Ann. N.Y. Acad. Sci. 238, 68 (1974).
[CrossRef] [PubMed]

1968

J. C. Anderson, C. Eriksson, Nature 218, 166 (1968).
[CrossRef] [PubMed]

1966

S. B. Lang, Nature 212, 704 (1966).
[CrossRef]

1964

E. Fukada, I. Yasuda, Jpn. J. Appl. Phys. 3, 117 (1964).
[CrossRef]

Anderson, J. C.

J. C. Anderson, C. Eriksson, Nature 218, 166 (1968).
[CrossRef] [PubMed]

Athenstaedt, H.

H. Athenstaedt, Nature 228, 830 (1970); Ann. N.Y. Acad. Sci. 238, 68 (1974).
[CrossRef] [PubMed]

Craig, A. S.

D. A. D. Parry, A. S. Craig, Biopolymers 16, 1015 (1977); Biopolymers 17, 843 (1978).
[CrossRef] [PubMed]

Cusack, S.

S. Cusack, A. Miller, J. Mol. Biol. 135, 292 (1980).

Eriksson, C.

J. C. Anderson, C. Eriksson, Nature 218, 166 (1968).
[CrossRef] [PubMed]

Freund, I.

S. Roth, I. Freund, Opt. Commun. 33, 292 (1980); Biopolymers 20, 1271 (1981).
[CrossRef] [PubMed]

Fukada, E.

E. Fukada, I. Yasuda, Jpn. J. Appl. Phys. 3, 117 (1964).
[CrossRef]

Kompfner, R.

Lang, S. B.

S. B. Lang, Nature 212, 704 (1966).
[CrossRef]

Miller, A.

S. Cusack, A. Miller, J. Mol. Biol. 135, 292 (1980).

Nye, J. F.

J. F. Nye, Physical Properties of Crystals (Oxford U. Press, London, 1964).

Parry, D. A. D.

D. A. D. Parry, A. S. Craig, Biopolymers 16, 1015 (1977); Biopolymers 17, 843 (1978).
[CrossRef] [PubMed]

Piez, K. A.

W. Traub, K. A. Piez, Adv. Prot. Chem. 25, 243 (1971).
[CrossRef]

Roth, S.

S. Roth, I. Freund, Opt. Commun. 33, 292 (1980); Biopolymers 20, 1271 (1981).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Traub, W.

W. Traub, K. A. Piez, Adv. Prot. Chem. 25, 243 (1971).
[CrossRef]

Yasuda, I.

E. Fukada, I. Yasuda, Jpn. J. Appl. Phys. 3, 117 (1964).
[CrossRef]

Adv. Prot. Chem.

W. Traub, K. A. Piez, Adv. Prot. Chem. 25, 243 (1971).
[CrossRef]

Appl. Opt.

Biopolymers

D. A. D. Parry, A. S. Craig, Biopolymers 16, 1015 (1977); Biopolymers 17, 843 (1978).
[CrossRef] [PubMed]

J. Mol. Biol.

S. Cusack, A. Miller, J. Mol. Biol. 135, 292 (1980).

Jpn. J. Appl. Phys.

E. Fukada, I. Yasuda, Jpn. J. Appl. Phys. 3, 117 (1964).
[CrossRef]

Nature

S. B. Lang, Nature 212, 704 (1966).
[CrossRef]

H. Athenstaedt, Nature 228, 830 (1970); Ann. N.Y. Acad. Sci. 238, 68 (1974).
[CrossRef] [PubMed]

J. C. Anderson, C. Eriksson, Nature 218, 166 (1968).
[CrossRef] [PubMed]

Opt. Commun.

S. Roth, I. Freund, Opt. Commun. 33, 292 (1980); Biopolymers 20, 1271 (1981).
[CrossRef] [PubMed]

Other

J. F. Nye, Physical Properties of Crystals (Oxford U. Press, London, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

SH scattering pattern for a three-month old RTT. The solid curve is calculated using the known parameters of this system.

Fig. 2
Fig. 2

SH microscope. The laser is a Q-switched Nd:YAG. Slit S1 is used to control the convergence of the laser beam, whereas slit S2 selects either the coherent or the incoherent imaging mode: in the figure this slit is set for coherent imaging. Not shown are various filters, a half-wave plate for polarization rotation, an analyzer, etc. The RTT sample has its long axis parallel to the Z axis.

Fig. 3
Fig. 3

(a) Coherent and (b) incoherent SH microscope images of a three-month-old tendon; the long tendon axis runs top to bottom. The images are negative, i.e., dark areas are regions of strong SH generation. The pixel size is 50 μm2, and a simple, linear 1–10 gray scale is used. The image in (a) is overexposed so as to bring out weaker features. (c) Line scan of the bottom edge of (a). The signal-to-noise ratio is such that all features seen are real: when scanned with higher resolution the various shoulders emerge as distinct, well-separated peaks. The scales of (a)–(c) are the same.

Fig. 4
Fig. 4

Coherent images of different (a)–(c) one-month-, (d)–(f) three-month-, and (g) six-month-old tendons. In all images the proximal end of the tendon is uppermost, except for (e) where the orientation was not documented and is uncertain. Microscope and image processing parameters for all samples are the same as for Fig. 3(a). The scale for all images is shown in (d).

Metrics