Abstract

A method to miniaturize the Faraday rotator for an optical isolator is proposed. The rotator includes a half-wave plate, and magnets arranged with alternating polarities are used. The principle of operation of the rotator is confirmed by measurements. An isolator employing the rotator has a backward loss of 32 dB and a forward loss of 0.65 dB at 0.633-μm wavelength, where the forward loss is mainly due to Fresnel reflection losses.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawakami, K. Shiraishi, in Proceedings, Conference on Integrated Optics and Optical Fiber Communication (Business Center for Academic Societies Japan, Tokyo, 1983), p. 346.
  2. K. Shiraishi, S. Sugaya, S. Kawakami, Appl. Opt. 23, 1103 (1984); K. Shiraishi, K. Nishino, S. Kawakami, Appl. Opt. 24, 1896 (1985).
    [CrossRef] [PubMed]
  3. K. Shiraishi, S. Sugaya, K. Baba, S. Kawakami, “Optical micro-isolator for longer wavelengths, presented at the 5th International Conference on Integrated Optics and Optical Fiber Communication and 11th European Conference on Optical Communication, Venezia, Italy, October 1985.
  4. R. H. Stolen, E. H. Turner, Appl. Opt. 19, 842 (1980).
    [CrossRef] [PubMed]
  5. E. H. Turner, R. H. Stolen, Opt. Lett. 6, 322 (1981).
    [CrossRef] [PubMed]
  6. G. W. Day, D. N. Payne, A. J. Barlow, J. J. Ramskovhansen, J. Lightwave Technol. LT-2, 56 (1984).
    [CrossRef]
  7. D. C. Flanders, Appl. Phys. Lett. 42, 492 (1983).
    [CrossRef]

1984 (2)

1983 (1)

D. C. Flanders, Appl. Phys. Lett. 42, 492 (1983).
[CrossRef]

1981 (1)

1980 (1)

Baba, K.

K. Shiraishi, S. Sugaya, K. Baba, S. Kawakami, “Optical micro-isolator for longer wavelengths, presented at the 5th International Conference on Integrated Optics and Optical Fiber Communication and 11th European Conference on Optical Communication, Venezia, Italy, October 1985.

Barlow, A. J.

G. W. Day, D. N. Payne, A. J. Barlow, J. J. Ramskovhansen, J. Lightwave Technol. LT-2, 56 (1984).
[CrossRef]

Day, G. W.

G. W. Day, D. N. Payne, A. J. Barlow, J. J. Ramskovhansen, J. Lightwave Technol. LT-2, 56 (1984).
[CrossRef]

Flanders, D. C.

D. C. Flanders, Appl. Phys. Lett. 42, 492 (1983).
[CrossRef]

Kawakami, S.

K. Shiraishi, S. Sugaya, S. Kawakami, Appl. Opt. 23, 1103 (1984); K. Shiraishi, K. Nishino, S. Kawakami, Appl. Opt. 24, 1896 (1985).
[CrossRef] [PubMed]

K. Shiraishi, S. Sugaya, K. Baba, S. Kawakami, “Optical micro-isolator for longer wavelengths, presented at the 5th International Conference on Integrated Optics and Optical Fiber Communication and 11th European Conference on Optical Communication, Venezia, Italy, October 1985.

S. Kawakami, K. Shiraishi, in Proceedings, Conference on Integrated Optics and Optical Fiber Communication (Business Center for Academic Societies Japan, Tokyo, 1983), p. 346.

Payne, D. N.

G. W. Day, D. N. Payne, A. J. Barlow, J. J. Ramskovhansen, J. Lightwave Technol. LT-2, 56 (1984).
[CrossRef]

Ramskovhansen, J. J.

G. W. Day, D. N. Payne, A. J. Barlow, J. J. Ramskovhansen, J. Lightwave Technol. LT-2, 56 (1984).
[CrossRef]

Shiraishi, K.

K. Shiraishi, S. Sugaya, S. Kawakami, Appl. Opt. 23, 1103 (1984); K. Shiraishi, K. Nishino, S. Kawakami, Appl. Opt. 24, 1896 (1985).
[CrossRef] [PubMed]

S. Kawakami, K. Shiraishi, in Proceedings, Conference on Integrated Optics and Optical Fiber Communication (Business Center for Academic Societies Japan, Tokyo, 1983), p. 346.

K. Shiraishi, S. Sugaya, K. Baba, S. Kawakami, “Optical micro-isolator for longer wavelengths, presented at the 5th International Conference on Integrated Optics and Optical Fiber Communication and 11th European Conference on Optical Communication, Venezia, Italy, October 1985.

Stolen, R. H.

Sugaya, S.

K. Shiraishi, S. Sugaya, S. Kawakami, Appl. Opt. 23, 1103 (1984); K. Shiraishi, K. Nishino, S. Kawakami, Appl. Opt. 24, 1896 (1985).
[CrossRef] [PubMed]

K. Shiraishi, S. Sugaya, K. Baba, S. Kawakami, “Optical micro-isolator for longer wavelengths, presented at the 5th International Conference on Integrated Optics and Optical Fiber Communication and 11th European Conference on Optical Communication, Venezia, Italy, October 1985.

Turner, E. H.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. C. Flanders, Appl. Phys. Lett. 42, 492 (1983).
[CrossRef]

J. Lightwave Technol. (1)

G. W. Day, D. N. Payne, A. J. Barlow, J. J. Ramskovhansen, J. Lightwave Technol. LT-2, 56 (1984).
[CrossRef]

Opt. Lett. (1)

Other (2)

K. Shiraishi, S. Sugaya, K. Baba, S. Kawakami, “Optical micro-isolator for longer wavelengths, presented at the 5th International Conference on Integrated Optics and Optical Fiber Communication and 11th European Conference on Optical Communication, Venezia, Italy, October 1985.

S. Kawakami, K. Shiraishi, in Proceedings, Conference on Integrated Optics and Optical Fiber Communication (Business Center for Academic Societies Japan, Tokyo, 1983), p. 346.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Examples of magnetic-field distributions for which |H(z)|dz = 10.6 kOe · cm within the shaded areas.

Fig. 2
Fig. 2

Schematic diagram of the rotator and its operation. F1 + F2 = 45° is required for an isolator.

Fig. 3
Fig. 3

Relations between diameters and total lengths of the magnets. The figures indicate the number of magnets. Solid and dashed lines correspond to |H(z)|dz = 10.6 and 18.6 kOe · cm, respectively, where calculation of |H(z)|dz is carried out along major n regions (see Fig. 1).

Fig. 4
Fig. 4

Calculated (dashed line) and measured (solid line) magnetic-field distributions of the composite Faraday rotator. Structure of the rotator is also shown.

Fig. 5
Fig. 5

View of the assembled rotator.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H ( z ) = B r 2 ( ( z - L ) { 1 [ ( z - L ) 2 + D 2 ] 1 / 2 - 1 [ ( z - L ) 2 + d 2 ] 1 / 2 } - ( z + L ) { 1 [ ( z + L ) 2 + D 2 ] 1 / 2 - 1 [ ( z + L ) 2 + d 2 ] 1 / 2 } ) ,
[ E X E Y ] = [ cos F 2 sin F 2 - sin F 2 cos F 2 ] [ j 0 0 - j ] × [ cos F 1 - sin F 1 sin F 1 cos F 1 ] [ E x E y ] = j [ cos ( F 1 + F 2 ) - sin ( F 1 + F 2 ) - sin ( F 1 + F 2 ) - cos ( F 1 + F 2 ) ] [ E x E y ] .

Metrics