Abstract

A new type of cutoff light modulator, which consists of a single-mode channel waveguide and strip electrodes placed asymmetrically on either side of the guide, is proposed. When a voltage is applied to the electrodes, this device exhibits an asymmetric refractive-index profile along a direction parallel to the crystal surface through the electro-optic effect. This produces a strong condition for cutoff of the fundamental mode of the guide. An ultrahigh extinction ratio of greater than 56 dB has been achieved by using a Ti-indiffused Y-cut LiNbO3 cutoff modulator with a 165-V drive at a wavelength of 0.6328 μm.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ramaswamy, M. D. Divino, R. D. Standley, Appl. Phys. Lett. 32, 644 (1978).
    [CrossRef]
  2. J. S. Wilkinson, M. G. F. Wilson, Proc. Inst. Electr. Eng. Part H 131, 304 (1984).
  3. J. C. Campbell, F. A. Blum, D. W. Shaw, Appl. Phys. Lett. 26, 640 (1975).
    [CrossRef]
  4. L. Goldberg, S. H. Lee, Appl. Opt. 18, 2045 (1979).
    [CrossRef] [PubMed]
  5. A. Neyer, W. Sohler, Appl. Phys. Lett. 35, 256 (1979).
    [CrossRef]
  6. P. R. Ashley, W. S. C. Chang, Appl. Phys. Lett. 45, 840 (1984).
    [CrossRef]
  7. M. Bélanger, G. L. Yip, Electron. Lett. 22, 252 (1986).
    [CrossRef]
  8. O. G. Ramer, IEEE J. Quantum Electron. QE-18, 386 (1982).
    [CrossRef]
  9. D. Marcuse, IEEE J. Quantum Electron. QE-18, 393 (1982).
    [CrossRef]

1986 (1)

M. Bélanger, G. L. Yip, Electron. Lett. 22, 252 (1986).
[CrossRef]

1984 (2)

P. R. Ashley, W. S. C. Chang, Appl. Phys. Lett. 45, 840 (1984).
[CrossRef]

J. S. Wilkinson, M. G. F. Wilson, Proc. Inst. Electr. Eng. Part H 131, 304 (1984).

1982 (2)

O. G. Ramer, IEEE J. Quantum Electron. QE-18, 386 (1982).
[CrossRef]

D. Marcuse, IEEE J. Quantum Electron. QE-18, 393 (1982).
[CrossRef]

1979 (2)

L. Goldberg, S. H. Lee, Appl. Opt. 18, 2045 (1979).
[CrossRef] [PubMed]

A. Neyer, W. Sohler, Appl. Phys. Lett. 35, 256 (1979).
[CrossRef]

1978 (1)

V. Ramaswamy, M. D. Divino, R. D. Standley, Appl. Phys. Lett. 32, 644 (1978).
[CrossRef]

1975 (1)

J. C. Campbell, F. A. Blum, D. W. Shaw, Appl. Phys. Lett. 26, 640 (1975).
[CrossRef]

Ashley, P. R.

P. R. Ashley, W. S. C. Chang, Appl. Phys. Lett. 45, 840 (1984).
[CrossRef]

Bélanger, M.

M. Bélanger, G. L. Yip, Electron. Lett. 22, 252 (1986).
[CrossRef]

Blum, F. A.

J. C. Campbell, F. A. Blum, D. W. Shaw, Appl. Phys. Lett. 26, 640 (1975).
[CrossRef]

Campbell, J. C.

J. C. Campbell, F. A. Blum, D. W. Shaw, Appl. Phys. Lett. 26, 640 (1975).
[CrossRef]

Chang, W. S. C.

P. R. Ashley, W. S. C. Chang, Appl. Phys. Lett. 45, 840 (1984).
[CrossRef]

Divino, M. D.

V. Ramaswamy, M. D. Divino, R. D. Standley, Appl. Phys. Lett. 32, 644 (1978).
[CrossRef]

Goldberg, L.

Lee, S. H.

Marcuse, D.

D. Marcuse, IEEE J. Quantum Electron. QE-18, 393 (1982).
[CrossRef]

Neyer, A.

A. Neyer, W. Sohler, Appl. Phys. Lett. 35, 256 (1979).
[CrossRef]

Ramaswamy, V.

V. Ramaswamy, M. D. Divino, R. D. Standley, Appl. Phys. Lett. 32, 644 (1978).
[CrossRef]

Ramer, O. G.

O. G. Ramer, IEEE J. Quantum Electron. QE-18, 386 (1982).
[CrossRef]

Shaw, D. W.

J. C. Campbell, F. A. Blum, D. W. Shaw, Appl. Phys. Lett. 26, 640 (1975).
[CrossRef]

Sohler, W.

A. Neyer, W. Sohler, Appl. Phys. Lett. 35, 256 (1979).
[CrossRef]

Standley, R. D.

V. Ramaswamy, M. D. Divino, R. D. Standley, Appl. Phys. Lett. 32, 644 (1978).
[CrossRef]

Wilkinson, J. S.

J. S. Wilkinson, M. G. F. Wilson, Proc. Inst. Electr. Eng. Part H 131, 304 (1984).

Wilson, M. G. F.

J. S. Wilkinson, M. G. F. Wilson, Proc. Inst. Electr. Eng. Part H 131, 304 (1984).

Yip, G. L.

M. Bélanger, G. L. Yip, Electron. Lett. 22, 252 (1986).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. Neyer, W. Sohler, Appl. Phys. Lett. 35, 256 (1979).
[CrossRef]

P. R. Ashley, W. S. C. Chang, Appl. Phys. Lett. 45, 840 (1984).
[CrossRef]

V. Ramaswamy, M. D. Divino, R. D. Standley, Appl. Phys. Lett. 32, 644 (1978).
[CrossRef]

J. C. Campbell, F. A. Blum, D. W. Shaw, Appl. Phys. Lett. 26, 640 (1975).
[CrossRef]

Electron. Lett. (1)

M. Bélanger, G. L. Yip, Electron. Lett. 22, 252 (1986).
[CrossRef]

IEEE J. Quantum Electron. (2)

O. G. Ramer, IEEE J. Quantum Electron. QE-18, 386 (1982).
[CrossRef]

D. Marcuse, IEEE J. Quantum Electron. QE-18, 393 (1982).
[CrossRef]

Proc. Inst. Electr. Eng. Part H (1)

J. S. Wilkinson, M. G. F. Wilson, Proc. Inst. Electr. Eng. Part H 131, 304 (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The EO cutoff modulator. (a) Basic configuration of the single-mode channel waveguide modulator formed on Y-cut LiNbO3. (b) Cross-sectional view of the modulator, where strip electrodes with different widths are asymmetrically placed on either side of the waveguide.

Fig. 2
Fig. 2

Lateral profiles of the index difference Δnt between the surface index and the substrate index for a cutoff modulator with applied electric fields. Parameters of the device are ne = 2.203, Δnd = 0.003, WN = 5 μm, and G = 10 μm. The profile exhibits a Gaussian distribution at Ez = 0. When Ez is applied, indices of the waveguide and substrate between electrodes decrease and the profile becomes asymmetric.

Fig. 3
Fig. 3

Variations in the near-field pattern with applied voltages at a wavelength of 0.6328 μm. (a) Relative intensity distribution of light transmitted through the waveguide and a 43-dB neutral-density filter at no applied voltage. (b) Relative intensity distribution of light transmitted only through the waveguide at an applied voltage of 165 V.

Fig. 4
Fig. 4

Dependence of the output intensity on the applied voltage for the cutoff modulator.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ n s = Δ n d exp [ - ( 2 z / W N ) 2 ] ,
Δ n e = - n e 3 r 33 E z / 2.
Δ n t = Δ n s + Δ n e .

Metrics