Abstract

The velocity of a light pulse traversing a transparent plate is found to be a periodic function of the thickness D. The period is one half the wavelength in the plate. The geometric average of the minimum and maximum velocities is the group velocity vg. The pulse width must be much greater than D/vg.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Halevi, R. Fuchs, Phys. Rev. Lett. 55, 338 (1985).
    [Crossref] [PubMed]
  2. P. Halevi, J. A. Gaspar-Armenta, in Proceedings of the Second International Conference on Surface Waves in Plasmas and Solids (World Scientific, New York, to be published).
  3. R. Messner, Zeiss Nachr. 4(H9), 253 (1943).

1985 (1)

P. Halevi, R. Fuchs, Phys. Rev. Lett. 55, 338 (1985).
[Crossref] [PubMed]

1943 (1)

R. Messner, Zeiss Nachr. 4(H9), 253 (1943).

Fuchs, R.

P. Halevi, R. Fuchs, Phys. Rev. Lett. 55, 338 (1985).
[Crossref] [PubMed]

Gaspar-Armenta, J. A.

P. Halevi, J. A. Gaspar-Armenta, in Proceedings of the Second International Conference on Surface Waves in Plasmas and Solids (World Scientific, New York, to be published).

Halevi, P.

P. Halevi, R. Fuchs, Phys. Rev. Lett. 55, 338 (1985).
[Crossref] [PubMed]

P. Halevi, J. A. Gaspar-Armenta, in Proceedings of the Second International Conference on Surface Waves in Plasmas and Solids (World Scientific, New York, to be published).

Messner, R.

R. Messner, Zeiss Nachr. 4(H9), 253 (1943).

Phys. Rev. Lett. (1)

P. Halevi, R. Fuchs, Phys. Rev. Lett. 55, 338 (1985).
[Crossref] [PubMed]

Zeiss Nachr. (1)

R. Messner, Zeiss Nachr. 4(H9), 253 (1943).

Other (1)

P. Halevi, J. A. Gaspar-Armenta, in Proceedings of the Second International Conference on Surface Waves in Plasmas and Solids (World Scientific, New York, to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E 0 ( z , t ) = - d ω S 0 ( ω ) exp [ - i ω ( t - z / c ) ] .
R ( t ) = d u S ( u ) exp ( - i u t ) .
E 0 ( z , t ) = R ( t - z / c ) exp [ - i ω ¯ ( t - z / c ) ] .
T m ( ω ) = t ( ω ) r 2 m ( ω ) t ( ω ) = 4 μ n ( μ + n ) - 2 [ ( n - μ ) / ( n + μ ) ] 2 m ,
E ( D , t ) = m = 0 d ω T m ( ω ) S 0 ( ω ) × exp i [ k ( ω ) D ( 1 + 2 m ) - ω t ] ,
k ( ω ) k ( ω ¯ ) + ( d k / d ω ¯ ) ( ω - ω ¯ ) = n ω ¯ / c + ( ω - ω ¯ ) / v g .
E ( D , t ) m = 0 T m ( ω ¯ ) R [ t - D ( 1 + 2 m ) / v g ] × exp i ω ¯ [ n D ( 1 + 2 m ) / c - t ] .
R ( t ) R ( 0 ) + ½ R ( 0 ) t 2 .
E ( D , t ) 4 μ n ( μ + n ) 2 exp [ i ω ¯ ( n D / c - t ) ] × m = 0 η 2 m { R ( 0 ) + ½ R ( 0 ) × [ t - D v g ( 1 + 2 m ) ] 2 } ,
η = [ ( n - μ ) / ( n + μ ) ] exp ( i ω ¯ n D / c ) .
E ( D , t ) 4 μ n ( μ + n ) 2 exp [ i ω ¯ ( n D / c - t ) ] × 1 1 - η 2 [ R ( 0 ) - 2 R ( 0 ) η 2 1 - η 2 D v g × ( t - D v g ) + ½ R ( 0 ) ( t - D v g ) 2 ] .
t 0 = [ 1 + 2 Re η 2 / ( 1 - η 2 ) ] D / v g .
v = D / t 0 = v g [ 1 + 2 Re η 2 / ( 1 - η 2 ) ] - 1 = v g [ 2 μ n μ 2 + n 2 cos 2 ( ω ¯ c n D ) + μ 2 + n 2 2 μ n sin 2 ( ω ¯ c n D ) ] .
v m = v g 2 μ n μ 2 + n 2 ,             v M = v g μ 2 + n 2 2 μ n .

Metrics