Abstract

We demonstrate that frequency-chirped laser excitation pulses may be employed to generate coherent transient signals possessing the same temporal profile as a particular excitation pulse. In comparison with the short, fixed-frequency pulses used in previous studies of this effect, chirped pulses can be temporally longer, of lower intensity, and hence easier to generate. The experiment was performed on the 555.6-nm transition of vapor-phase atomic ytterbium, and pulse-shape information was stored in a coherence between excited-state Zeeman levels. A simple theoretical analysis of our results is presented.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. A. Zuikov, V. V. Samartsev, R. G. Usmanov, Pis’ma Zh. Eksp. Teor. Fiz. 32, 293 (1980) [JETP Lett. 32, 271 (1980)]; S. O. Elyutin, S. M. Zakharov, V. A. Zuikov, E. A. Manykin, V. V. Samartsev, Zh. Eksp. Teor. Fiz. 88, 401 (1985) [Sov. Phys. JETP 61, 234 (1985)]; A. Rebane, R. Kaarli, P. Saari, A. Anijaig, K. Timpmann, Opt. Commun. 47, 173 (1983).
    [Crossref]
  2. T. M. Mossberg, Opt. Lett. 7, 77 (1982); W. R. Babbitt, Y. S. Bai, T. W. Mossberg, Proc. Soc. Photo-Opt. Instrum. Eng.639 (to be published).
    [Crossref] [PubMed]
  3. M. Mitsunaga, R. G. Brewer, Phys. Rev. A 32, 1605 (1985).
    [Crossref] [PubMed]
  4. N. W. Carlson, W. R. Babbitt, Y. S. Bai, T. W. Mossberg, J. Opt. Soc. Am. B 2, 908 (1985).
    [Crossref]
  5. N. W. Carlson, Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984).
    [Crossref]
  6. Related spin-echo work can be found in S. Fernbach, W. G. Proctor, J. Appl. Phys. 26, 170 (1955); A. G. Anderson, R. L. Garwin, E. L. Hahn, J. W. Horton, G. L. Tucker, R. M. Walker, J. Appl. Phys. 26, 1324 (1955).
    [Crossref]
  7. W. E. Moerner, J. Mol. Electron. 1, 55 (1985).
  8. The power spectrum of a chirped pulse is virtually flat over the chirp bandwidth, provided that Δνcτ ≫ 1. Here Δνc is the chirp bandwidth and τ the duration of the pulse. See J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, Bell. Syst. Tech. J. 39, 745 (1960).
  9. Y. S. Bai, T. W. Mossberg, Opt. Lett. 11, 30 (1986).
    [Crossref] [PubMed]

1986 (1)

1985 (3)

N. W. Carlson, W. R. Babbitt, Y. S. Bai, T. W. Mossberg, J. Opt. Soc. Am. B 2, 908 (1985).
[Crossref]

M. Mitsunaga, R. G. Brewer, Phys. Rev. A 32, 1605 (1985).
[Crossref] [PubMed]

W. E. Moerner, J. Mol. Electron. 1, 55 (1985).

1984 (1)

N. W. Carlson, Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984).
[Crossref]

1982 (1)

1980 (1)

V. A. Zuikov, V. V. Samartsev, R. G. Usmanov, Pis’ma Zh. Eksp. Teor. Fiz. 32, 293 (1980) [JETP Lett. 32, 271 (1980)]; S. O. Elyutin, S. M. Zakharov, V. A. Zuikov, E. A. Manykin, V. V. Samartsev, Zh. Eksp. Teor. Fiz. 88, 401 (1985) [Sov. Phys. JETP 61, 234 (1985)]; A. Rebane, R. Kaarli, P. Saari, A. Anijaig, K. Timpmann, Opt. Commun. 47, 173 (1983).
[Crossref]

1960 (1)

The power spectrum of a chirped pulse is virtually flat over the chirp bandwidth, provided that Δνcτ ≫ 1. Here Δνc is the chirp bandwidth and τ the duration of the pulse. See J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, Bell. Syst. Tech. J. 39, 745 (1960).

1955 (1)

Related spin-echo work can be found in S. Fernbach, W. G. Proctor, J. Appl. Phys. 26, 170 (1955); A. G. Anderson, R. L. Garwin, E. L. Hahn, J. W. Horton, G. L. Tucker, R. M. Walker, J. Appl. Phys. 26, 1324 (1955).
[Crossref]

Albersheim, W. J.

The power spectrum of a chirped pulse is virtually flat over the chirp bandwidth, provided that Δνcτ ≫ 1. Here Δνc is the chirp bandwidth and τ the duration of the pulse. See J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, Bell. Syst. Tech. J. 39, 745 (1960).

Babbitt, W. R.

N. W. Carlson, W. R. Babbitt, Y. S. Bai, T. W. Mossberg, J. Opt. Soc. Am. B 2, 908 (1985).
[Crossref]

N. W. Carlson, Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984).
[Crossref]

Bai, Y. S.

Brewer, R. G.

M. Mitsunaga, R. G. Brewer, Phys. Rev. A 32, 1605 (1985).
[Crossref] [PubMed]

Carlson, N. W.

N. W. Carlson, W. R. Babbitt, Y. S. Bai, T. W. Mossberg, J. Opt. Soc. Am. B 2, 908 (1985).
[Crossref]

N. W. Carlson, Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984).
[Crossref]

Darlington, S.

The power spectrum of a chirped pulse is virtually flat over the chirp bandwidth, provided that Δνcτ ≫ 1. Here Δνc is the chirp bandwidth and τ the duration of the pulse. See J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, Bell. Syst. Tech. J. 39, 745 (1960).

Fernbach, S.

Related spin-echo work can be found in S. Fernbach, W. G. Proctor, J. Appl. Phys. 26, 170 (1955); A. G. Anderson, R. L. Garwin, E. L. Hahn, J. W. Horton, G. L. Tucker, R. M. Walker, J. Appl. Phys. 26, 1324 (1955).
[Crossref]

Klauder, J. R.

The power spectrum of a chirped pulse is virtually flat over the chirp bandwidth, provided that Δνcτ ≫ 1. Here Δνc is the chirp bandwidth and τ the duration of the pulse. See J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, Bell. Syst. Tech. J. 39, 745 (1960).

Mitsunaga, M.

M. Mitsunaga, R. G. Brewer, Phys. Rev. A 32, 1605 (1985).
[Crossref] [PubMed]

Moerner, W. E.

W. E. Moerner, J. Mol. Electron. 1, 55 (1985).

Mossberg, T. M.

Mossberg, T. W.

Price, A. C.

The power spectrum of a chirped pulse is virtually flat over the chirp bandwidth, provided that Δνcτ ≫ 1. Here Δνc is the chirp bandwidth and τ the duration of the pulse. See J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, Bell. Syst. Tech. J. 39, 745 (1960).

Proctor, W. G.

Related spin-echo work can be found in S. Fernbach, W. G. Proctor, J. Appl. Phys. 26, 170 (1955); A. G. Anderson, R. L. Garwin, E. L. Hahn, J. W. Horton, G. L. Tucker, R. M. Walker, J. Appl. Phys. 26, 1324 (1955).
[Crossref]

Samartsev, V. V.

V. A. Zuikov, V. V. Samartsev, R. G. Usmanov, Pis’ma Zh. Eksp. Teor. Fiz. 32, 293 (1980) [JETP Lett. 32, 271 (1980)]; S. O. Elyutin, S. M. Zakharov, V. A. Zuikov, E. A. Manykin, V. V. Samartsev, Zh. Eksp. Teor. Fiz. 88, 401 (1985) [Sov. Phys. JETP 61, 234 (1985)]; A. Rebane, R. Kaarli, P. Saari, A. Anijaig, K. Timpmann, Opt. Commun. 47, 173 (1983).
[Crossref]

Usmanov, R. G.

V. A. Zuikov, V. V. Samartsev, R. G. Usmanov, Pis’ma Zh. Eksp. Teor. Fiz. 32, 293 (1980) [JETP Lett. 32, 271 (1980)]; S. O. Elyutin, S. M. Zakharov, V. A. Zuikov, E. A. Manykin, V. V. Samartsev, Zh. Eksp. Teor. Fiz. 88, 401 (1985) [Sov. Phys. JETP 61, 234 (1985)]; A. Rebane, R. Kaarli, P. Saari, A. Anijaig, K. Timpmann, Opt. Commun. 47, 173 (1983).
[Crossref]

Zuikov, V. A.

V. A. Zuikov, V. V. Samartsev, R. G. Usmanov, Pis’ma Zh. Eksp. Teor. Fiz. 32, 293 (1980) [JETP Lett. 32, 271 (1980)]; S. O. Elyutin, S. M. Zakharov, V. A. Zuikov, E. A. Manykin, V. V. Samartsev, Zh. Eksp. Teor. Fiz. 88, 401 (1985) [Sov. Phys. JETP 61, 234 (1985)]; A. Rebane, R. Kaarli, P. Saari, A. Anijaig, K. Timpmann, Opt. Commun. 47, 173 (1983).
[Crossref]

Bell. Syst. Tech. J. (1)

The power spectrum of a chirped pulse is virtually flat over the chirp bandwidth, provided that Δνcτ ≫ 1. Here Δνc is the chirp bandwidth and τ the duration of the pulse. See J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, Bell. Syst. Tech. J. 39, 745 (1960).

J. Appl. Phys. (1)

Related spin-echo work can be found in S. Fernbach, W. G. Proctor, J. Appl. Phys. 26, 170 (1955); A. G. Anderson, R. L. Garwin, E. L. Hahn, J. W. Horton, G. L. Tucker, R. M. Walker, J. Appl. Phys. 26, 1324 (1955).
[Crossref]

J. Mol. Electron. (1)

W. E. Moerner, J. Mol. Electron. 1, 55 (1985).

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Phys. Rev. A (2)

M. Mitsunaga, R. G. Brewer, Phys. Rev. A 32, 1605 (1985).
[Crossref] [PubMed]

N. W. Carlson, Y. S. Bai, W. R. Babbitt, T. W. Mossberg, Phys. Rev. A 30, 1572 (1984).
[Crossref]

Pis’ma Zh. Eksp. Teor. Fiz. (1)

V. A. Zuikov, V. V. Samartsev, R. G. Usmanov, Pis’ma Zh. Eksp. Teor. Fiz. 32, 293 (1980) [JETP Lett. 32, 271 (1980)]; S. O. Elyutin, S. M. Zakharov, V. A. Zuikov, E. A. Manykin, V. V. Samartsev, Zh. Eksp. Teor. Fiz. 88, 401 (1985) [Sov. Phys. JETP 61, 234 (1985)]; A. Rebane, R. Kaarli, P. Saari, A. Anijaig, K. Timpmann, Opt. Commun. 47, 173 (1983).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Effective three-level Yb atom. The levels |2〉 and |3〉 can be decomposed in terms of magnetic sublevels of the (6s6p)3P1 state according to |2〉 = |m = 0〉 and 3 = ( m = 1 + m = - 1 ) / 2. The relative linear polarizations of the excitation pulses are indicated. (b) Experimental setup. RDL, cw ring dye laser; AO’s, acousto-optical modulators; PBC, polarizing beam combiner; P, polarizer; PMT, photomultiplier tube. The polarizer and the acousto-optic modulator located after the oven isolate the desired signal from the input pulses and other coherent emissions from the sample.

Fig. 2
Fig. 2

(a) Intensity versus time of a three-pulse excitation sequence as recorded on a fast silicon photodiode. (b) Voltage applied to the intracavity ADP crystal versus time. The dye laser’s frequency varies linearly with this voltage. (a) and (b) are plotted using the same time axis.

Fig. 3
Fig. 3

Single-event intensity versus time recordings of (a), (d) data pulses reduced to intensities comparable with observed signals; (b), (e) output signals generated when pulses1 and 3 are frequency chirped; (c), (f) output signals generated when pulses 1 and 3 are short and intense.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

i d Ψ / d t = [ H 0 - μ ^ E ( t ) ] Ψ ,
d C m ( t ) / d t = ( i / ) m μ ^ n E ( t ) C n ( t ) exp ( - i ω n m t ) ,
d C n ( t ) / d t = ( i / ) n μ ^ m E ( t ) C m ( t ) exp ( i ω t ) ,
C m ( t ) = C m ( t 0 ) + i C n ( t 0 ) m μ ^ n E ( ω n m ) / ,
C n ( t ) = C n ( t 0 ) + i C m ( t 0 ) n μ ^ m E * ( ω n m ) / ,
E ( ω ) = - + E ( t ) exp ( - i ω t ) d t
P 13 ( ω 31 ) = i ( μ 4 / 3 ) E 1 * ( ω 31 ) E 2 ( ω 31 ) E 3 ( ω ) × exp ( i ω 31 t ) + c . c . ,
E s ( t ) 0 d ω g ( ω ) p 13 ( ω ) .

Metrics