Abstract

A new technique for maintaining single-frequency output from injection-seeded Nd:YAG lasers is described. It involves quickly sweeping the slave-cavity longitudinal-mode spectrum when the flash lamps have created a maximum population inversion. An interference signal is detected by fast electronics, and the Q switch is opened when the slave cavity is resonant with the injected field.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. K. Park, G. Giuliani, R. L. Byer, Opt. Lett. 5, 96 (1980).
    [CrossRef] [PubMed]
  2. Y. K. Park, Ph.D. dissertation (Stanford University, Stanford, Calif., 1981).
  3. Y. K. Park, G. Giuliani, R. L. Byer, IEEE J. Quantum Electron. QE-20, 117 (1984).
    [CrossRef]
  4. R. E. Teets, IEEE J. Quantum Electron. QE-20, 326 (1984).
    [CrossRef]
  5. L. A. Rahn, Appl. Opt. 24, 940 (1985).
    [CrossRef] [PubMed]
  6. T. W. Hänsch, B. Couillaud, Opt. Commun. 35, 441 (1980).
    [CrossRef]
  7. E. S. Fry, S. W. Henderson, Appl. Opt. 25, 3017 (1986).
    [CrossRef] [PubMed]
  8. Jim Hopkins of Lightwave Electronics has suggested that the self-fulfilling unstable-resonator cavity could solve these problems; see P. G. Gobbi, S. Morosi, G. C. Reali, A. S. Zarbasi, Appl. Opt. 24, 26 (1985).
    [CrossRef] [PubMed]

1986 (1)

1985 (2)

1984 (2)

Y. K. Park, G. Giuliani, R. L. Byer, IEEE J. Quantum Electron. QE-20, 117 (1984).
[CrossRef]

R. E. Teets, IEEE J. Quantum Electron. QE-20, 326 (1984).
[CrossRef]

1980 (2)

Byer, R. L.

Y. K. Park, G. Giuliani, R. L. Byer, IEEE J. Quantum Electron. QE-20, 117 (1984).
[CrossRef]

Y. K. Park, G. Giuliani, R. L. Byer, Opt. Lett. 5, 96 (1980).
[CrossRef] [PubMed]

Couillaud, B.

T. W. Hänsch, B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Fry, E. S.

Giuliani, G.

Y. K. Park, G. Giuliani, R. L. Byer, IEEE J. Quantum Electron. QE-20, 117 (1984).
[CrossRef]

Y. K. Park, G. Giuliani, R. L. Byer, Opt. Lett. 5, 96 (1980).
[CrossRef] [PubMed]

Gobbi, P. G.

Hänsch, T. W.

T. W. Hänsch, B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Henderson, S. W.

Morosi, S.

Park, Y. K.

Y. K. Park, G. Giuliani, R. L. Byer, IEEE J. Quantum Electron. QE-20, 117 (1984).
[CrossRef]

Y. K. Park, G. Giuliani, R. L. Byer, Opt. Lett. 5, 96 (1980).
[CrossRef] [PubMed]

Y. K. Park, Ph.D. dissertation (Stanford University, Stanford, Calif., 1981).

Rahn, L. A.

Reali, G. C.

Teets, R. E.

R. E. Teets, IEEE J. Quantum Electron. QE-20, 326 (1984).
[CrossRef]

Zarbasi, A. S.

Appl. Opt. (3)

IEEE J. Quantum Electron. (2)

Y. K. Park, G. Giuliani, R. L. Byer, IEEE J. Quantum Electron. QE-20, 117 (1984).
[CrossRef]

R. E. Teets, IEEE J. Quantum Electron. QE-20, 326 (1984).
[CrossRef]

Opt. Commun. (1)

T. W. Hänsch, B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Opt. Lett. (1)

Other (1)

Y. K. Park, Ph.D. dissertation (Stanford University, Stanford, Calif., 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a typical Q-switched Nd:YAG laser: M1, M2, mirrors; PC, Pockels cell; P, polarizer; EINC, seeding field; Es, signal field.

Fig. 2
Fig. 2

Schematic of the experimental arrangement: P’s, polarizers; FR’s, Faraday rotators; M’s, mirrors; HW, half-wave plate; QW’s, quarter-wave plates; PZ, piezoelectric stack; PC, Pockels cell; A, aperture; PD, photodetector; RDE, resonance-detection electronics.

Fig. 3
Fig. 3

The upper trace is the voltage ramp applied to the piezoelectric stack, and the lower trace shows the resulting intensity modulation of the signal. The signal background is the flash-Lamp-created population-inversion pulse.

Fig. 4
Fig. 4

Block diagram of the resonance-detection electronics.

Fig. 5
Fig. 5

The Q-switched output of the stabilized injection-seeded laser. (a) The optical spectrum taken over a 50-sec scan time with a scanning confocal interferometer whose cw finesse is approximately 100. The two peaks are separated by the interferometer free spectral range of 1.5 GHz. (b) Temporal response for a single 75-mJ pulse.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E 1 ( R L ) = E 1 exp ( - i ω t ) [ a exp ( i ϕ R ) b exp ( i ϕ L ) ] ,
E 2 ( X Y ) = E 2 exp { i [ k ( n d + L 1 + L 2 ) - π / 4 - ω t ] } [ a exp ( i ϕ R ) b exp ( i ϕ L ) ] ,
E 3 ( X Y ) = E 3 exp { i [ k ( n d + L 1 + L 2 + 2 L 3 ) + 3 π / 4 + ϕ R - ω t ] } ( 1 0 ) ,
E 4 ( X Y ) = E 4 exp { i [ k ( 3 n d + 3 L 1 + 3 L 2 + 2 L 3 ) + 5 π / 4 + ϕ R - ω t ] } ( 0 1 ) .
k ( 2 n d + 2 L 1 + 2 L 2 + 2 L 3 ) + 3 π / 2 + ϕ R - ϕ L = 2 m π ,             m = 0 , 1 , .
ϕ R - ϕ L = π / 2 ± 2 m π ,             m = 0 , 1 , .
E 1 ( X Y ) = ( 1 / 2 ) E 1 exp [ i ( ϕ R - ω t ) ] [ ( a + b ) exp ( - i π / 4 ) ( a - b ) exp ( i π / 4 ) ] .

Metrics