Abstract

Low-magnification unstable resonators that utilize radially birefringent elements and that have been shown to be suitable for use with ruby and alexandrite lasers are described. From these resonators, 400 mJ of energy in a Q-switched pulse with ~2.5× diffraction-limited output has been obtained from alexandrite, and 250-mJ Q-switched output that is near diffraction limited has been obtained from ruby.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik, Appl. Opt. 4, 1562 (1965).
    [CrossRef]
  2. L. W. Casperson, A. Yariv, Appl. Opt. 11, 462 (1972).
    [CrossRef] [PubMed]
  3. G. J. Ernst, W. J. Witteman, IEEE J. Quantum Electron. QE-9, 911 (1973).
    [CrossRef]
  4. L. W. Casperson, IEEE J. Quantum Electron. QE-10, 629 (1974).
    [CrossRef]
  5. L. W. Casperson, A. Yariv, Appl. Phys. Lett. 12, 355 (1968).
    [CrossRef]
  6. H. Zucker, Bell Syst. Tech. J. 49, 2343 (1970).
  7. A Yariv, P. Yeh, Opt. Commun. 13, 370–374 (1975).
    [CrossRef]
  8. A. N. Chester, Appl. Opt. 11, 2584 (1972).
    [CrossRef] [PubMed]
  9. J. M. Eggleston, G. Giuliani, R. L. Byer, J. Opt. Soc. Am. 71, 1264 (1981).
    [CrossRef]
  10. G. Giuliani, Y. K. Park, R. L. Byer, Opt. Lett. 5, 491 (1980).
    [CrossRef] [PubMed]
  11. Equation (1) can be derived by using Jones matrices described in Ref. 9 for the elements described in Fig. 1.
  12. L. W. Casperson, S. D. Lunnam, Appl. Opt. 14, 1193 (1975).
    [CrossRef] [PubMed]

1981 (1)

1980 (1)

1975 (2)

1974 (1)

L. W. Casperson, IEEE J. Quantum Electron. QE-10, 629 (1974).
[CrossRef]

1973 (1)

G. J. Ernst, W. J. Witteman, IEEE J. Quantum Electron. QE-9, 911 (1973).
[CrossRef]

1972 (2)

1970 (1)

H. Zucker, Bell Syst. Tech. J. 49, 2343 (1970).

1968 (1)

L. W. Casperson, A. Yariv, Appl. Phys. Lett. 12, 355 (1968).
[CrossRef]

1965 (1)

Byer, R. L.

Casperson, L. W.

L. W. Casperson, S. D. Lunnam, Appl. Opt. 14, 1193 (1975).
[CrossRef] [PubMed]

L. W. Casperson, IEEE J. Quantum Electron. QE-10, 629 (1974).
[CrossRef]

L. W. Casperson, A. Yariv, Appl. Opt. 11, 462 (1972).
[CrossRef] [PubMed]

L. W. Casperson, A. Yariv, Appl. Phys. Lett. 12, 355 (1968).
[CrossRef]

Chester, A. N.

Eggleston, J. M.

Ernst, G. J.

G. J. Ernst, W. J. Witteman, IEEE J. Quantum Electron. QE-9, 911 (1973).
[CrossRef]

Giuliani, G.

Kogelnik, H.

Lunnam, S. D.

Park, Y. K.

Witteman, W. J.

G. J. Ernst, W. J. Witteman, IEEE J. Quantum Electron. QE-9, 911 (1973).
[CrossRef]

Yariv, A

A Yariv, P. Yeh, Opt. Commun. 13, 370–374 (1975).
[CrossRef]

Yariv, A.

L. W. Casperson, A. Yariv, Appl. Opt. 11, 462 (1972).
[CrossRef] [PubMed]

L. W. Casperson, A. Yariv, Appl. Phys. Lett. 12, 355 (1968).
[CrossRef]

Yeh, P.

A Yariv, P. Yeh, Opt. Commun. 13, 370–374 (1975).
[CrossRef]

Zucker, H.

H. Zucker, Bell Syst. Tech. J. 49, 2343 (1970).

Appl. Opt. (4)

Appl. Phys. Lett. (1)

L. W. Casperson, A. Yariv, Appl. Phys. Lett. 12, 355 (1968).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Zucker, Bell Syst. Tech. J. 49, 2343 (1970).

IEEE J. Quantum Electron. (2)

G. J. Ernst, W. J. Witteman, IEEE J. Quantum Electron. QE-9, 911 (1973).
[CrossRef]

L. W. Casperson, IEEE J. Quantum Electron. QE-10, 629 (1974).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

A Yariv, P. Yeh, Opt. Commun. 13, 370–374 (1975).
[CrossRef]

Opt. Lett. (1)

Other (1)

Equation (1) can be derived by using Jones matrices described in Ref. 9 for the elements described in Fig. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The elements that constitute the RBE output coupler, as well as the angle between the fast axis of each element and vertical polarization. 3, 4, Birefringent lenses; 2, 5, compensator plates; 1, polarizer; 6, mirror.

Fig. 2
Fig. 2

The reflectance of the radially birefringent filter used in the experiments plotted as a function of radius. The zero of the reflectance is approximately at the aperture of the 0.635-cm rod. θ2 is the angle between the direction of polarization and the fast axis of the quartz lens, which is a quarter-wave plate in its center.

Fig. 3
Fig. 3

The output coupling of a Gaussian reflector plotted as a function of the ratio of the incident Gaussian beam radius to the radius of the Gaussian reflector, rm, with an aperture rc = rm (b). The output coupling is also plotted for a radial birefringent filter without an aperture (d) and with an aperture (a), where rc = r0. The loss from the aperture (c) is also plotted.

Fig. 4
Fig. 4

(a) The magnified image of the focal spot from a multitransverse-mode alexandrite laser that is 6–8× diffraction limited. (b) Shows the focal spot from an alexandrite RBE laser at 400 mJ, Q switched; a three-dimensional plot is shown in (c). The alexandrite beam in (b) and (c) is ~2.5 diffraction limited; (e) and (f) show the image of the focal spot from a 250-mJ, Q-switched RBE ruby laser. (d) Diffraction-limited spot at 632 nm for the imaging system used with the ruby laser.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R = cos 2 ( 2 α r ) [ cos 2 ( 2 θ 2 ) + sin 2 ( 2 α r ) ( sin 2 θ 2 - 1 ) 2 ] ,
α r = - π Δ n r 2 2 λ ρ = π 4 r 2 r 0 2 ,
L = 1 - 0 2 π 0 exp ( - 2 r 2 / r 2 ) R ( r ) r d r d θ 0 2 π 0 r c exp ( - 2 r 2 / r 2 ) r d r d θ ;
L = 1 - r e 2 / r 2 [ 1 - exp ( - 2 r c 2 / r e 2 ) ] ,
1 / r e 2 = 1 / r m 2 + 1 / r 2 .
L = 1 - [ 1 - exp ( - P π ) ] ( 2 P 2 + 5 ) 2 ( P 2 + 4 ) ( P 2 + 1 ) - P 2 P 2 + 1 ,
L = 3 / [ 2 ( P 2 + 4 ) ( P 2 + 1 ) ] .
[ 1 0 - i λ π r m 2 1 ] .

Metrics