Abstract

We demonstrate the cascading of biconical fiber tapers as a simple method for converting monomode optical fibers into wavelength filters with a prescribed response. As an example, we made a narrow-bandpass filter consisting of four biconical tapers of different elongations made in succession on a single fiber. The transmission peak of the spectral response of the filter is centered on an arbitrary wavelength within the monomode domain of the fiber. The half-power width is approximately 6 nm.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Boucouvalas, G. Georgiou, Electron. Lett. 21, 864 (1985).
    [CrossRef]
  2. A. C. Boucouvalas, G. Georgiou, Electron. Lett. 21, 1033 (1985).
    [CrossRef]
  3. D. T. Cassidy, D. C. Johnson, K. O. Hill, Appl. Opt. 24, 945 (1985).
    [CrossRef] [PubMed]
  4. M. S. Yataki, D. N. Payne, M. P. Varnham, Electron. Lett. 21, 248 (1985).
    [CrossRef]
  5. K. Okamoto, J. Noda, Electron. Lett. 22, 211 (1986).
    [CrossRef]
  6. M. Parent, J. Bures, S. Lacroix, J. Lapierre, Appl. Opt. 24, 354 (1985).
    [CrossRef] [PubMed]
  7. W. V. Sorin, H. J. Shaw, IEEE J. Lightwave Technol. LT-3, 1041 (1985).
    [CrossRef]
  8. R. C. Youngquist, J. L. Brooks, W. P. Risk, G. S. Kino, H. J. Shaw, Proc. Inst. Electr. Eng. 132, 277 (1985).
  9. R. H. Stolen, A. Ashkin, W. Pleibel, J. M. Dziedzic, Opt. Lett. 9, 300 (1984).
    [CrossRef] [PubMed]

1986 (1)

K. Okamoto, J. Noda, Electron. Lett. 22, 211 (1986).
[CrossRef]

1985 (7)

M. Parent, J. Bures, S. Lacroix, J. Lapierre, Appl. Opt. 24, 354 (1985).
[CrossRef] [PubMed]

W. V. Sorin, H. J. Shaw, IEEE J. Lightwave Technol. LT-3, 1041 (1985).
[CrossRef]

R. C. Youngquist, J. L. Brooks, W. P. Risk, G. S. Kino, H. J. Shaw, Proc. Inst. Electr. Eng. 132, 277 (1985).

A. C. Boucouvalas, G. Georgiou, Electron. Lett. 21, 864 (1985).
[CrossRef]

A. C. Boucouvalas, G. Georgiou, Electron. Lett. 21, 1033 (1985).
[CrossRef]

D. T. Cassidy, D. C. Johnson, K. O. Hill, Appl. Opt. 24, 945 (1985).
[CrossRef] [PubMed]

M. S. Yataki, D. N. Payne, M. P. Varnham, Electron. Lett. 21, 248 (1985).
[CrossRef]

1984 (1)

Ashkin, A.

Boucouvalas, A. C.

A. C. Boucouvalas, G. Georgiou, Electron. Lett. 21, 864 (1985).
[CrossRef]

A. C. Boucouvalas, G. Georgiou, Electron. Lett. 21, 1033 (1985).
[CrossRef]

Brooks, J. L.

R. C. Youngquist, J. L. Brooks, W. P. Risk, G. S. Kino, H. J. Shaw, Proc. Inst. Electr. Eng. 132, 277 (1985).

Bures, J.

Cassidy, D. T.

Dziedzic, J. M.

Georgiou, G.

A. C. Boucouvalas, G. Georgiou, Electron. Lett. 21, 1033 (1985).
[CrossRef]

A. C. Boucouvalas, G. Georgiou, Electron. Lett. 21, 864 (1985).
[CrossRef]

Hill, K. O.

Johnson, D. C.

Kino, G. S.

R. C. Youngquist, J. L. Brooks, W. P. Risk, G. S. Kino, H. J. Shaw, Proc. Inst. Electr. Eng. 132, 277 (1985).

Lacroix, S.

Lapierre, J.

Noda, J.

K. Okamoto, J. Noda, Electron. Lett. 22, 211 (1986).
[CrossRef]

Okamoto, K.

K. Okamoto, J. Noda, Electron. Lett. 22, 211 (1986).
[CrossRef]

Parent, M.

Payne, D. N.

M. S. Yataki, D. N. Payne, M. P. Varnham, Electron. Lett. 21, 248 (1985).
[CrossRef]

Pleibel, W.

Risk, W. P.

R. C. Youngquist, J. L. Brooks, W. P. Risk, G. S. Kino, H. J. Shaw, Proc. Inst. Electr. Eng. 132, 277 (1985).

Shaw, H. J.

W. V. Sorin, H. J. Shaw, IEEE J. Lightwave Technol. LT-3, 1041 (1985).
[CrossRef]

R. C. Youngquist, J. L. Brooks, W. P. Risk, G. S. Kino, H. J. Shaw, Proc. Inst. Electr. Eng. 132, 277 (1985).

Sorin, W. V.

W. V. Sorin, H. J. Shaw, IEEE J. Lightwave Technol. LT-3, 1041 (1985).
[CrossRef]

Stolen, R. H.

Varnham, M. P.

M. S. Yataki, D. N. Payne, M. P. Varnham, Electron. Lett. 21, 248 (1985).
[CrossRef]

Yataki, M. S.

M. S. Yataki, D. N. Payne, M. P. Varnham, Electron. Lett. 21, 248 (1985).
[CrossRef]

Youngquist, R. C.

R. C. Youngquist, J. L. Brooks, W. P. Risk, G. S. Kino, H. J. Shaw, Proc. Inst. Electr. Eng. 132, 277 (1985).

Appl. Opt. (2)

Electron. Lett. (4)

M. S. Yataki, D. N. Payne, M. P. Varnham, Electron. Lett. 21, 248 (1985).
[CrossRef]

K. Okamoto, J. Noda, Electron. Lett. 22, 211 (1986).
[CrossRef]

A. C. Boucouvalas, G. Georgiou, Electron. Lett. 21, 864 (1985).
[CrossRef]

A. C. Boucouvalas, G. Georgiou, Electron. Lett. 21, 1033 (1985).
[CrossRef]

IEEE J. Lightwave Technol. (1)

W. V. Sorin, H. J. Shaw, IEEE J. Lightwave Technol. LT-3, 1041 (1985).
[CrossRef]

Opt. Lett. (1)

Proc. Inst. Electr. Eng. (1)

R. C. Youngquist, J. L. Brooks, W. P. Risk, G. S. Kino, H. J. Shaw, Proc. Inst. Electr. Eng. 132, 277 (1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Transmitted power in a single-mode step-index fiber as a function of elongation; a small flame (<2 mm) was used. The number of oscillations during the elongation, N, is 12.25.

Fig. 2
Fig. 2

(a) Transmitted power through a tapered single-mode step-index fiber (shown in the inset) as a function of wavelength. (b) The normalization curve of the system.

Fig. 3
Fig. 3

Λ−1, the inverse half-period in the spectral response of a taper, versus N, the number of power oscillations during elongation.

Fig. 4
Fig. 4

Theoretical response of four concatenated tapers as a function of wavelength. The wavelength unit is 2Λ1.

Fig. 5
Fig. 5

Experimental setup. Four tapers in series, each having a different number of oscillations. The fiber core, cladding, and jacket are shown. PM, photomultiplier.

Fig. 6
Fig. 6

(a) Experimental spectral response of four concatenated biconical tapers (shown in the inset). (b) The normalization curve of the system.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T i ( λ ) = cos 2 [ π ( λ - λ 0 ) / 2 Λ i ] ,
T ( λ ) = i = 1 n cos 2 [ π ( λ - λ 0 ) / 2 Λ i ] .

Metrics