Abstract

A theory of intensity-dependent polarization changes in twisted single-mode fibers is presented. The theory includes the effect of twist-induced circular birefringence and shows that twist can enhance the nonlinear transmnission of fiber-optic devices that rely on nonlinear birefringence.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen, J. Botineau, A. Ashkin, Opt. Lett. 7, 512 (1982).
    [Crossref] [PubMed]
  2. B. Nikolaus, D. Grischkowsky, A. C. Balant, Opt. Lett. 8, 189 (1983).
    [Crossref] [PubMed]
  3. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, W. J. Tomlinson, Opt. Lett. 8, 289 (1983).
    [Crossref] [PubMed]
  4. N. J. Halas, D. Grischkowsky, Appl. Phys. Lett. 48, 823 (1986).
    [Crossref]
  5. K. Kitayama, Y. Kimura, S. Seikai, Appl. Phys. Lett. 46, 317 (1985).
    [Crossref]
  6. B. Daino, G. Gregori, S. Wabnitz, Opt. Lett. 11, 42 (1986).
    [Crossref] [PubMed]
  7. H. G. Winful, Opt. Lett. 11, 33 (1986).
    [Crossref] [PubMed]
  8. H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
    [Crossref]
  9. H. G. Winful, Phys. Rev. Lett. 49, 1179 (1982).
    [Crossref]
  10. R. Ulrich, A. Simon, Appl. Opt. 18, 2241 (1979).
    [Crossref] [PubMed]
  11. P. McIntyre, A. W. Snyder, J. Opt. Soc. Am. 68, 149 (1978).
    [Crossref] [PubMed]
  12. P. D. Maker, R. W. Terhune, C. M. Savage, Phys. Rev. Lett. 12, 507 (1964).
    [Crossref]
  13. F. Matera, S. Wabnitz, Opt. Lett. 11, 467 (1986).
    [Crossref] [PubMed]

1986 (4)

1985 (2)

K. Kitayama, Y. Kimura, S. Seikai, Appl. Phys. Lett. 46, 317 (1985).
[Crossref]

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[Crossref]

1983 (2)

1982 (2)

1979 (1)

1978 (1)

1964 (1)

P. D. Maker, R. W. Terhune, C. M. Savage, Phys. Rev. Lett. 12, 507 (1964).
[Crossref]

Ashkin, A.

Balant, A. C.

Botineau, J.

Daino, B.

Gordon, J. P.

Gregori, G.

Grischkowsky, D.

Halas, N. J.

N. J. Halas, D. Grischkowsky, Appl. Phys. Lett. 48, 823 (1986).
[Crossref]

Kimura, Y.

K. Kitayama, Y. Kimura, S. Seikai, Appl. Phys. Lett. 46, 317 (1985).
[Crossref]

Kitayama, K.

K. Kitayama, Y. Kimura, S. Seikai, Appl. Phys. Lett. 46, 317 (1985).
[Crossref]

Maker, P. D.

P. D. Maker, R. W. Terhune, C. M. Savage, Phys. Rev. Lett. 12, 507 (1964).
[Crossref]

Matera, F.

McIntyre, P.

Mollenauer, L. F.

Nikolaus, B.

Savage, C. M.

P. D. Maker, R. W. Terhune, C. M. Savage, Phys. Rev. Lett. 12, 507 (1964).
[Crossref]

Seikai, S.

K. Kitayama, Y. Kimura, S. Seikai, Appl. Phys. Lett. 46, 317 (1985).
[Crossref]

Simon, A.

Snyder, A. W.

Stolen, R. H.

Terhune, R. W.

P. D. Maker, R. W. Terhune, C. M. Savage, Phys. Rev. Lett. 12, 507 (1964).
[Crossref]

Tomlinson, W. J.

Ulrich, R.

Wabnitz, S.

Winful, H. G.

H. G. Winful, Opt. Lett. 11, 33 (1986).
[Crossref] [PubMed]

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985).
[Crossref]

H. G. Winful, Phys. Rev. Lett. 49, 1179 (1982).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Transmission versus input polarization angle for a twisted-fiber and crossed-polarizer pair. The normalized input power is P = 1. The retardation is 2κL = 2π. A, no twist; B, moderate twist; μ = 8; C, strong twist, μ = 99.

Fig. 2
Fig. 2

Nonlinear transmission versus input power for beams polarized along a nominal axis. Here κL = 10π. A, low twist, μ = 0.1;B, moderate twist, μ = 2; C, strong twist, μ = 100.

Tables (1)

Tables Icon

Table 1 Definitions of Parameters Used in the Elliptic Function Solutions [Eq. (9)]

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

x x = 1 ,             y y = 2 ,             x y = - y x = ½ i η ,
= [ 0 + a cos ( 2 q z ) a sin ( 2 q z ) + ½ i η a sin ( 2 q z ) - ½ i η 0 - a cos ( 2 q z ) ] ,
P NL = ( n n 2 / 6 π ) [ ( E · E * ) E + ½ ( E · E ) E * ] ,
d c + / d z = κ c - sin ψ ,
d c - / d z = - κ c + sin ψ ,
d ψ / d z = κ ( c - / c + - c + / c - ) cos ψ - ( 2 q - α ) + β ( c - 2 - c + 2 ) .
p = u + v ,
Γ = u v cos ψ - u ( u - p + μ ) ,
u 0 u d u / [ Q ( u ) ] 1 / 2 = ± 2 κ z ,
Q ( u ) = u ( p - u ) - [ u ( u + μ - p ) + Γ ] 2
( Case I ) u ( z ) = u 3 + ( u 2 - u 3 1 - ( u 1 - u 2 ) ( u 1 - u 3 ) - 1 s n 2 ( x m ) ,
( Case II ) u ( z ) = 1 + 2 A B ( a - b ) / ( b A - a B ) ( b + A ) + ( A - B ) c n ( x m ) ,
P s π μ / β L

Metrics