Abstract

We describe an optical filter based on prisms, which provides both spectral filtering and an adjustable correction to group-velocity dispersion. The low losses permit incorporation in a laser oscillator, and the group-velocity correction of the prism sequence has been used with pulses as short as 10 fsec.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, Opt. Lett. 8, 1 (1983).
    [CrossRef] [PubMed]
  2. R. L. Fork, O. E. Martinez, J. P. Gordon, Opt. Lett. 9, 150 (1984).
    [CrossRef] [PubMed]
  3. J. P. Gordon, R. L. Fork, Opt. Lett. 9, 153 (1984).
    [CrossRef] [PubMed]
  4. O. E. Martinez, J. P. Gordon, R. L. Fork, J. Opt. Soc. Am. A 1, 1003 (1984).
    [CrossRef]
  5. J. A. Valdmanis, R. L. Fork, J. P. Gordon, Opt. Lett. 10, 131 (1985).
    [CrossRef] [PubMed]
  6. J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
    [CrossRef]
  7. J. P. Heritage, A. M. Weiner, R. N. Thurston, Opt. Lett. 10, 609 (1985).
    [CrossRef] [PubMed]
  8. R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson, IEEE J. Quantum Electron. QE-22, 682 (1986).
    [CrossRef]
  9. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), pp. 21–23.
  10. This condition can be trivially derived from the grating operation as given, e.g., in Ref. 9.
  11. The author is indebted to J. P. Gordon, who outlined this approach before our knowledge of the work by Thurston et al.
  12. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982)
    [CrossRef]

1986

R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson, IEEE J. Quantum Electron. QE-22, 682 (1986).
[CrossRef]

1985

1984

1983

1982

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982)
[CrossRef]

Fork, R. L.

Gordon, J. P.

Heritage, J. P.

R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson, IEEE J. Quantum Electron. QE-22, 682 (1986).
[CrossRef]

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

J. P. Heritage, A. M. Weiner, R. N. Thurston, Opt. Lett. 10, 609 (1985).
[CrossRef] [PubMed]

Hirlimann, C.

Jenkins, F. A.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), pp. 21–23.

Martinez, O. E.

Shank, C. V.

R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, Opt. Lett. 8, 1 (1983).
[CrossRef] [PubMed]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982)
[CrossRef]

Stolen, R. H.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982)
[CrossRef]

Thurston, R. N.

R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson, IEEE J. Quantum Electron. QE-22, 682 (1986).
[CrossRef]

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

J. P. Heritage, A. M. Weiner, R. N. Thurston, Opt. Lett. 10, 609 (1985).
[CrossRef] [PubMed]

Tomlinson, W. J.

R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson, IEEE J. Quantum Electron. QE-22, 682 (1986).
[CrossRef]

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982)
[CrossRef]

Valdmanis, J. A.

Weiner, A. M.

R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson, IEEE J. Quantum Electron. QE-22, 682 (1986).
[CrossRef]

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

J. P. Heritage, A. M. Weiner, R. N. Thurston, Opt. Lett. 10, 609 (1985).
[CrossRef] [PubMed]

White, H. E.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), pp. 21–23.

Yen, R.

R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, Opt. Lett. 8, 1 (1983).
[CrossRef] [PubMed]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982)
[CrossRef]

Appl. Phys. Lett.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, W. J. Tomlinson, Appl. Phys. Lett. 40, 761 (1982)
[CrossRef]

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

IEEE J. Quantum Electron.

R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson, IEEE J. Quantum Electron. QE-22, 682 (1986).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Other

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), pp. 21–23.

This condition can be trivially derived from the grating operation as given, e.g., in Ref. 9.

The author is indebted to J. P. Gordon, who outlined this approach before our knowledge of the work by Thurston et al.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Spectral filter with adjustable group-velocity dispersion. The bandwidth and central wavelength of the transmitted light are adjusted by varying the width and position, respectively, of the slit in the symmetry plane, and the net group-velocity dispersion is adjusted from positive through negative values by translating one of the prisms normal to its base.

Fig. 2
Fig. 2

Construction for calculating the spectral dispersion along the line MM′ in the symmetry plane. Path CDE and path AB are equal because AC and BE are both possible wave fronts and path CJ is both parallel and equal to AB by construction. It follows that the optical path CDE equals l cos β. Also, by congruent triangles CA equals BJ, and by symmetry GH equals CA. It follows that GH equals l sin β.

Fig. 3
Fig. 3

(a) Experimental plot of filtered continuum pulse spectrum for flint prisms spaced by 33.5 cm and a slit width of 270 μm. (b) Schematic diagram of laser incorporating prism filter.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d x d λ = l cos β d β d λ .
d β d λ = d β d n d n d λ = - 2 d n d λ .
d x d λ = - 2 l cos β d n d λ ,
Δ = - 2 l cos β d n d λ ( λ - λ 0 ) .
η ( λ ) = 2 / π w - d + d exp { - [ 2 ( x - Δ ) 2 / w 2 ] } d x .
η ( λ ) = ½ { erf [ 2 ( d + Δ ) / w ] + erf [ 2 ( d - Δ ) / w ] } .
F ( λ ) = ¼ { erf [ 2 ( d + Δ ) / w ] + erf [ 2 ( d - Δ ) / w ] } 2 .

Metrics