Abstract

A moving-slab-geometry Nd:glass laser has been designed and demonstrated. An average power output of 43.8 W has been achieved at 2.76-kW input power and at 2.06% slope efficiency. The moving-slab laser has the potential for scaling to kilowatt average power levels.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Martin, J. P. Chernoch, “Multiple internal reflection face pumped laser,” U.S. Patent3,633,126 (January1972).
  2. J. M. Eggleston, T. J. Kane, J. Unternahrer, R. L. Byer, Opt. Lett. 7, 405 (1982).
    [CrossRef] [PubMed]
  3. J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
    [CrossRef]
  4. T. J. Kane, J. M. Eggleston, R. L. Byer, IEEE J. Quantum Electron. QE-21, 1195 (1985).
    [CrossRef]
  5. T. J. Kane, R. L. Byer, J. Opt. Soc. Am. 72, 1755 (1982).
  6. S. Basu, T. J. Kane, R. L. Byer, “A proposed 1-kW average power Nd:glass moving slab laser,” IEEE J. Quantum Electron. (to be published).
  7. W. Koechner, Solid State Laser Engineering (Springer, New York, 1976).
  8. M. S. Mangir, D. A. Rockwell, IEEE J. Quantum Electron. QE-22, 574 (1986).
    [CrossRef]
  9. M. Reed, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-21, 412 (1985).
    [CrossRef]
  10. W. W. Rigrod, J. Appl. Phys. 36, 2487 (1965).
    [CrossRef]
  11. D. J. Nagel, Proc. Soc. Photo-Opt. Instrum. Eng. 448, 17 (1983).
  12. J. A. Trail, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 563, 90 (1985).

1986

M. S. Mangir, D. A. Rockwell, IEEE J. Quantum Electron. QE-22, 574 (1986).
[CrossRef]

1985

M. Reed, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-21, 412 (1985).
[CrossRef]

T. J. Kane, J. M. Eggleston, R. L. Byer, IEEE J. Quantum Electron. QE-21, 1195 (1985).
[CrossRef]

J. A. Trail, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 563, 90 (1985).

1984

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
[CrossRef]

1983

D. J. Nagel, Proc. Soc. Photo-Opt. Instrum. Eng. 448, 17 (1983).

1982

1965

W. W. Rigrod, J. Appl. Phys. 36, 2487 (1965).
[CrossRef]

Basu, S.

S. Basu, T. J. Kane, R. L. Byer, “A proposed 1-kW average power Nd:glass moving slab laser,” IEEE J. Quantum Electron. (to be published).

Byer, R. L.

M. Reed, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-21, 412 (1985).
[CrossRef]

T. J. Kane, J. M. Eggleston, R. L. Byer, IEEE J. Quantum Electron. QE-21, 1195 (1985).
[CrossRef]

J. A. Trail, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 563, 90 (1985).

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
[CrossRef]

J. M. Eggleston, T. J. Kane, J. Unternahrer, R. L. Byer, Opt. Lett. 7, 405 (1982).
[CrossRef] [PubMed]

T. J. Kane, R. L. Byer, J. Opt. Soc. Am. 72, 1755 (1982).

S. Basu, T. J. Kane, R. L. Byer, “A proposed 1-kW average power Nd:glass moving slab laser,” IEEE J. Quantum Electron. (to be published).

Chernoch, J. P.

W. S. Martin, J. P. Chernoch, “Multiple internal reflection face pumped laser,” U.S. Patent3,633,126 (January1972).

Eggleston, J. M.

T. J. Kane, J. M. Eggleston, R. L. Byer, IEEE J. Quantum Electron. QE-21, 1195 (1985).
[CrossRef]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
[CrossRef]

J. M. Eggleston, T. J. Kane, J. Unternahrer, R. L. Byer, Opt. Lett. 7, 405 (1982).
[CrossRef] [PubMed]

Kane, T. J.

T. J. Kane, J. M. Eggleston, R. L. Byer, IEEE J. Quantum Electron. QE-21, 1195 (1985).
[CrossRef]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
[CrossRef]

J. M. Eggleston, T. J. Kane, J. Unternahrer, R. L. Byer, Opt. Lett. 7, 405 (1982).
[CrossRef] [PubMed]

T. J. Kane, R. L. Byer, J. Opt. Soc. Am. 72, 1755 (1982).

S. Basu, T. J. Kane, R. L. Byer, “A proposed 1-kW average power Nd:glass moving slab laser,” IEEE J. Quantum Electron. (to be published).

Koechner, W.

W. Koechner, Solid State Laser Engineering (Springer, New York, 1976).

Kuhn, K.

M. Reed, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-21, 412 (1985).
[CrossRef]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
[CrossRef]

Mangir, M. S.

M. S. Mangir, D. A. Rockwell, IEEE J. Quantum Electron. QE-22, 574 (1986).
[CrossRef]

Martin, W. S.

W. S. Martin, J. P. Chernoch, “Multiple internal reflection face pumped laser,” U.S. Patent3,633,126 (January1972).

Nagel, D. J.

D. J. Nagel, Proc. Soc. Photo-Opt. Instrum. Eng. 448, 17 (1983).

Reed, M.

M. Reed, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-21, 412 (1985).
[CrossRef]

Rigrod, W. W.

W. W. Rigrod, J. Appl. Phys. 36, 2487 (1965).
[CrossRef]

Rockwell, D. A.

M. S. Mangir, D. A. Rockwell, IEEE J. Quantum Electron. QE-22, 574 (1986).
[CrossRef]

Trail, J. A.

J. A. Trail, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 563, 90 (1985).

Unternahrer, J.

M. Reed, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-21, 412 (1985).
[CrossRef]

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
[CrossRef]

J. M. Eggleston, T. J. Kane, J. Unternahrer, R. L. Byer, Opt. Lett. 7, 405 (1982).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-20, 289 (1984).
[CrossRef]

T. J. Kane, J. M. Eggleston, R. L. Byer, IEEE J. Quantum Electron. QE-21, 1195 (1985).
[CrossRef]

M. S. Mangir, D. A. Rockwell, IEEE J. Quantum Electron. QE-22, 574 (1986).
[CrossRef]

M. Reed, K. Kuhn, J. Unternahrer, R. L. Byer, IEEE J. Quantum Electron. QE-21, 412 (1985).
[CrossRef]

J. Appl. Phys.

W. W. Rigrod, J. Appl. Phys. 36, 2487 (1965).
[CrossRef]

J. Opt. Soc. Am.

T. J. Kane, R. L. Byer, J. Opt. Soc. Am. 72, 1755 (1982).

Opt. Lett.

Proc. Soc. Photo-Opt. Instrum. Eng.

D. J. Nagel, Proc. Soc. Photo-Opt. Instrum. Eng. 448, 17 (1983).

J. A. Trail, R. L. Byer, Proc. Soc. Photo-Opt. Instrum. Eng. 563, 90 (1985).

Other

S. Basu, T. J. Kane, R. L. Byer, “A proposed 1-kW average power Nd:glass moving slab laser,” IEEE J. Quantum Electron. (to be published).

W. Koechner, Solid State Laser Engineering (Springer, New York, 1976).

W. S. Martin, J. P. Chernoch, “Multiple internal reflection face pumped laser,” U.S. Patent3,633,126 (January1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram of the moving-slab laser showing an exploded view schematic of the linear-motor-driven slab module and cooling approach.

Fig. 2
Fig. 2

Laser output energy versus pump energy. 13.8 cm of a 16.7 cm × 15 cm × 0.44 cm 3.3% doped LHG-5 Nd:glass slab was pumped by two 15-cm krypton lamps at 2 Hz. The lamps and the glass slab were separated by 1.72 cm. Both silver and gold reflectors were tested in the lamp reflector assembly. The resonator consisted of a 3-m high reflector and a flat output coupler separated by 89.5 cm. △, Silver reflector with 25% T output mirror; +, silver reflector with 40% T output mirror; □, gold reflector with a 40% transmission output mirror.

Fig. 3
Fig. 3

Laser output versus lamp power input. The lamps were pumped at 276 J/pulse, yielding a multimode laser output of 4.38 J/pulse. Average output power was 43.8 W, which was limited by the available power supply. The laser can operate at up to 10 kW of input power.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P ave = 12 η ex f R s A / t g χ ,
R s = σ max ( 1 - ν ) k g / α E ,
τ = C p t g 2 / 12 k g ,
γ r = σ ( L / cos θ ) N exp ( - E 2 / k T ) ,

Metrics