Abstract

We report lasing characteristics of 40–60-μm-diameter Rhodamine 590/water solution droplets pumped by a 20-nsec-duration Q-switched laser. The Rhodamine/water solution provides a useful model system for studying the properties of oscillators based on whispering-gallery-wave spherical cavities. The low threshold for lasing, 104 W/cm2 for 10−4 M solutions, is consistent with particle size and a cavity Q factor of 104. Portions of the droplet lase purely in transverse electric (TE) modes, while other portions contain both TE and lower-Q transverse magnetic modes. In the far field, the lasing droplet approximates a coherent point source emitting in all directions.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Lord Rayleigh, Phil. Mag. 27, 100 (1914).
  2. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  3. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  4. A. Ashkin, J. M. Dziedzic, R. H. Stolen, Appl. Opt. 20, 2299 (1981); A. Ashkin, J. M. Dziedzic, Appl. Opt. 20, 1803 (1981).
    [CrossRef] [PubMed]
  5. J. F. Owen, P. W. Barber, B. J. Messinger, R. K. Chang, Opt. Lett. 6, 272 (1981).
    [CrossRef] [PubMed]
  6. A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 926 (1977); A. Ashkin, Science 210, 1081 (1980).
    [CrossRef] [PubMed]
  7. R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, Phys. Rev. Lett. 44, 475 (1980).
    [CrossRef]
  8. H. -M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 273 (1984).
    [CrossRef] [PubMed]
  9. H. -M. Tzeng, M. B. Long, R. K. Chang, P. W. Barber, Opt. Lett. 10, 209 (1985).
    [CrossRef] [PubMed]
  10. H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).
    [CrossRef] [PubMed]
  11. J. B. Snow, S. -X. Qian, R. K. Chang, Opt. Lett. 10, 37 (1985).
    [CrossRef] [PubMed]
  12. S.-X. Qian, J. B. Snow, R. K. Chang, Opt. Lett. 10, 499 (1985).
    [CrossRef] [PubMed]
  13. S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
    [CrossRef] [PubMed]
  14. C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
    [CrossRef]
  15. S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, Science 231, 486 (1986).
    [CrossRef] [PubMed]
  16. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), p. 554.
  17. P. Chylek, J. Opt. Soc. Am. 66, 285 (1976).
    [CrossRef]

1986 (2)

S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

1985 (3)

1984 (2)

1981 (2)

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

1977 (1)

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 926 (1977); A. Ashkin, Science 210, 1081 (1980).
[CrossRef] [PubMed]

1976 (1)

1961 (1)

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
[CrossRef]

1914 (1)

Lord Rayleigh, Phil. Mag. 27, 100 (1914).

Ashkin, A.

Barber, P. W.

Benner, R. E.

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

Bond, W. L.

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
[CrossRef]

Chang, R. K.

Chylek, P.

Dziedzic, J. M.

Garrett, C. G. B.

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
[CrossRef]

Kaiser, W.

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
[CrossRef]

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Long, M. B.

Messinger, B. J.

Owen, J. F.

J. F. Owen, P. W. Barber, B. J. Messinger, R. K. Chang, Opt. Lett. 6, 272 (1981).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

Qian, S. -X.

Qian, S.-X.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

S.-X. Qian, J. B. Snow, R. K. Chang, Opt. Lett. 10, 499 (1985).
[CrossRef] [PubMed]

Rayleigh, Lord

Lord Rayleigh, Phil. Mag. 27, 100 (1914).

Snow, J. B.

Stolen, R. H.

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), p. 554.

Tzeng, H. -M.

Tzeng, H.-M.

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

H.-M. Tzeng, K. F. Wall, M. B. Long, R. K. Chang, Opt. Lett. 9, 499 (1984).
[CrossRef] [PubMed]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Wall, K. F.

Appl. Opt. (1)

J. Opt. Soc. Am. (1)

Opt. Lett. (6)

Phil. Mag. (1)

Lord Rayleigh, Phil. Mag. 27, 100 (1914).

Phys. Rev. (1)

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
[CrossRef]

Phys. Rev. Lett. (3)

S.-X. Qian, R. K. Chang, Phys. Rev. Lett. 56, 926 (1986).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, Phys. Rev. Lett. 38, 926 (1977); A. Ashkin, Science 210, 1081 (1980).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, R. K. Chang, Phys. Rev. Lett. 44, 475 (1980).
[CrossRef]

Science (1)

S.-X. Qian, J. B. Snow, H.-M. Tzeng, R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

Other (3)

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), p. 554.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Wavelength variation of a, absorption and b, fluorescence of Rhodamine 590 in water. Curve c represents a typical plot of gain minus absorption loss. Higher pump intensity shifts the peak of c to the blue, whereas increasing the concentration of Rhodamine shifts the peak to the red. The vertical lines designated by d represent the typical placement and Q factors of TEN modes for a 20-μm-diameter particle. At laser threshold (104 W/cm2) the mode having the highest Q closest to the peak of c will oscillate first. At intensities of 105 W/cm2, typically a single mode cluster will oscillate. However, when two clusters are equidistant from the peak of c, both will oscillate.

Fig. 2
Fig. 2

Spectra showing predominantly TE whispering-gallery-mode structure of lasing Rhodamine 590/water solution droplets. Changing mode structure is due to particle-size change, which in turn is due to variation of the frequency of the vibrating orifice generator from 56.8 to 40.2 kHz. The 105-W/CM2 pump was vertically polarized, and the spectrograph observed radiation emitted perpendicular to a plane containing the pump E and k vectors.

Fig. 3
Fig. 3

In (a) the pump is as in Fig. 2 and mode structure is predominantly of TE character. In (b) the pump is horizontally polarized and modes of TM and TE character simultaneously oscillate.

Metrics