Abstract

A novel low-loss electro-optic Ti–LiNbO3 TE–TM mode converter is demonstrated. The polarization conversion is not wavelength selective. Extremely high conversion efficiency with an extinction ratio of more than 33 dB has been achieved with 7-V drive. The device is made immune from the optical damage and Li2O outdiffusion problems typically associated with LiNbO3 devices by the use of a z-propagation waveguide.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ramaswamy, R. D. Standley, D. Sze, K. L. Lawbey, Bell Syst. Tech. J. 57, 635 (1978).
  2. R. C. Alferness, Appl. Phys. Lett. 36, 513 (1980).
    [CrossRef]
  3. R. C. Alferness, L. L. Buhl, Appl. Phys. Lett. 38, 655 (1981).
    [CrossRef]
  4. R. C. Alferness, L. L. Buhl, Opt. Lett. 7, 500 (1982).
    [CrossRef] [PubMed]
  5. S. Thaniyavarn, Appl. Phys. Lett. (to be published).
  6. A. Yariv, IEEE J. Quantum Electron. QE-9, 949 (1973).
  7. R. L. Holman, J. Busch, M. Parmenter, P. J. Cressman, in Proceedings of the 1983 IEEE International Symposium on Applications of Ferroelectrics (Institute of Electrical and Electronics Engineers, New York, 1983), paper 7A-7.
  8. R. L. Holman, Proc. Soc. Photo-Opt. Instrum. Eng. 408, 14 (1983).
  9. Y. Hando, M. Miyawaki, S. Ogura, Proc. Soc. Photo-Opt. Instrum. Eng. 460, 20 (1984).

1984 (1)

Y. Hando, M. Miyawaki, S. Ogura, Proc. Soc. Photo-Opt. Instrum. Eng. 460, 20 (1984).

1983 (1)

R. L. Holman, Proc. Soc. Photo-Opt. Instrum. Eng. 408, 14 (1983).

1982 (1)

1981 (1)

R. C. Alferness, L. L. Buhl, Appl. Phys. Lett. 38, 655 (1981).
[CrossRef]

1980 (1)

R. C. Alferness, Appl. Phys. Lett. 36, 513 (1980).
[CrossRef]

1978 (1)

V. Ramaswamy, R. D. Standley, D. Sze, K. L. Lawbey, Bell Syst. Tech. J. 57, 635 (1978).

1973 (1)

A. Yariv, IEEE J. Quantum Electron. QE-9, 949 (1973).

Alferness, R. C.

R. C. Alferness, L. L. Buhl, Opt. Lett. 7, 500 (1982).
[CrossRef] [PubMed]

R. C. Alferness, L. L. Buhl, Appl. Phys. Lett. 38, 655 (1981).
[CrossRef]

R. C. Alferness, Appl. Phys. Lett. 36, 513 (1980).
[CrossRef]

Buhl, L. L.

R. C. Alferness, L. L. Buhl, Opt. Lett. 7, 500 (1982).
[CrossRef] [PubMed]

R. C. Alferness, L. L. Buhl, Appl. Phys. Lett. 38, 655 (1981).
[CrossRef]

Busch, J.

R. L. Holman, J. Busch, M. Parmenter, P. J. Cressman, in Proceedings of the 1983 IEEE International Symposium on Applications of Ferroelectrics (Institute of Electrical and Electronics Engineers, New York, 1983), paper 7A-7.

Cressman, P. J.

R. L. Holman, J. Busch, M. Parmenter, P. J. Cressman, in Proceedings of the 1983 IEEE International Symposium on Applications of Ferroelectrics (Institute of Electrical and Electronics Engineers, New York, 1983), paper 7A-7.

Hando, Y.

Y. Hando, M. Miyawaki, S. Ogura, Proc. Soc. Photo-Opt. Instrum. Eng. 460, 20 (1984).

Holman, R. L.

R. L. Holman, Proc. Soc. Photo-Opt. Instrum. Eng. 408, 14 (1983).

R. L. Holman, J. Busch, M. Parmenter, P. J. Cressman, in Proceedings of the 1983 IEEE International Symposium on Applications of Ferroelectrics (Institute of Electrical and Electronics Engineers, New York, 1983), paper 7A-7.

Lawbey, K. L.

V. Ramaswamy, R. D. Standley, D. Sze, K. L. Lawbey, Bell Syst. Tech. J. 57, 635 (1978).

Miyawaki, M.

Y. Hando, M. Miyawaki, S. Ogura, Proc. Soc. Photo-Opt. Instrum. Eng. 460, 20 (1984).

Ogura, S.

Y. Hando, M. Miyawaki, S. Ogura, Proc. Soc. Photo-Opt. Instrum. Eng. 460, 20 (1984).

Parmenter, M.

R. L. Holman, J. Busch, M. Parmenter, P. J. Cressman, in Proceedings of the 1983 IEEE International Symposium on Applications of Ferroelectrics (Institute of Electrical and Electronics Engineers, New York, 1983), paper 7A-7.

Ramaswamy, V.

V. Ramaswamy, R. D. Standley, D. Sze, K. L. Lawbey, Bell Syst. Tech. J. 57, 635 (1978).

Standley, R. D.

V. Ramaswamy, R. D. Standley, D. Sze, K. L. Lawbey, Bell Syst. Tech. J. 57, 635 (1978).

Sze, D.

V. Ramaswamy, R. D. Standley, D. Sze, K. L. Lawbey, Bell Syst. Tech. J. 57, 635 (1978).

Thaniyavarn, S.

S. Thaniyavarn, Appl. Phys. Lett. (to be published).

Yariv, A.

A. Yariv, IEEE J. Quantum Electron. QE-9, 949 (1973).

Appl. Phys. Lett. (2)

R. C. Alferness, Appl. Phys. Lett. 36, 513 (1980).
[CrossRef]

R. C. Alferness, L. L. Buhl, Appl. Phys. Lett. 38, 655 (1981).
[CrossRef]

Bell Syst. Tech. J. (1)

V. Ramaswamy, R. D. Standley, D. Sze, K. L. Lawbey, Bell Syst. Tech. J. 57, 635 (1978).

IEEE J. Quantum Electron. (1)

A. Yariv, IEEE J. Quantum Electron. QE-9, 949 (1973).

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

R. L. Holman, Proc. Soc. Photo-Opt. Instrum. Eng. 408, 14 (1983).

Y. Hando, M. Miyawaki, S. Ogura, Proc. Soc. Photo-Opt. Instrum. Eng. 460, 20 (1984).

Other (2)

R. L. Holman, J. Busch, M. Parmenter, P. J. Cressman, in Proceedings of the 1983 IEEE International Symposium on Applications of Ferroelectrics (Institute of Electrical and Electronics Engineers, New York, 1983), paper 7A-7.

S. Thaniyavarn, Appl. Phys. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

A TE ↔ TM mode converter with three separated electrodes for efficient electrical tuning of TE–TM phase velocity through V2 and TE ↔ TM mode conversion through V1

Fig. 2
Fig. 2

Measured TE → TM conversion versus applied voltage (V1). The optical wave at the input is TE polarized. The phase-tuning voltage (V2) is set to ground. (The horizontal voltage scale is 2 V/division.)

Fig. 3
Fig. 3

Measured TE → TM conversion versus applied voltage (V1). The optical wave at the input is TE polarized. The voltage (V2) is adjusted to achieve TE–TM phase matching. (V2 = 26.8 V; the horizontal voltage scale is 2 V/division.)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

κ = α π 2 λ n o 3 r 61 E x ,
Δ n TM + n o 3 r 22 E y / 2 , Δ n TE - n o 3 r 22 E y / 2.
N TE = n o + Δ n TE BC + Δ n TE EO , N TM = n o + Δ n TM BC + Δ n TM EO ,

Metrics