Abstract

Photon echoes generated by long (i.e., 400–800-nsec) frequency-chirped optical pulses are found to possess (after compensating for avoidable material relaxation) up to 25% of the energy of the first excitation pulse and to have a duration determined by the total chirp bandwidth of the excitation pulses. In our experiment, echoes 30 times shorter than the first excitation pulse were observed.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981).
    [CrossRef]
  2. D. Grischkowsky, A. C. Balant, Appl. Phys. Lett. 41, 1(1982).
    [CrossRef]
  3. C. V. Shank, Science 219, 1027 (1983).
    [CrossRef] [PubMed]
  4. E. B. Treacy, Phys. Lett. 28A, 34 (1968).
  5. J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, Bell Syst. Tech. J. 39, 745 (1960).
  6. W. J. Tomlinson, R. H. Stolen, C. V. Shank, J. Opt. Soc. Am. B 1, 139 (1984).
    [CrossRef]
  7. Y. S. Bai, T. W. Mossberg, Appl. Phys. Lett. 45, 1269 (1984).
    [CrossRef]
  8. M. Scully, M. J. Stephen, D. C. Burnham, Phys. Rev. 171, 213 (1968). T. W. Mossberg, R. Kachru, S. R. Hartmann, A. M. Flusberg, Phys. Rev. A 20, 1976 (1979).
    [CrossRef]
  9. Intracavity frequency switching has previously been employed to study coherent transients. See A. Z. Genack, R. G. Brewer, Phys. Rev. A 17, 1463 (1978); W. S. Warren, A. H. Zewail, J. Chem. Phys. 78, 2279 (1983).
    [CrossRef]
  10. J. E. Rothenberg, D. Grischkowsky, J. Opt. Soc. Am. B 2, 626 (1985).
    [CrossRef]

1985 (1)

1984 (2)

1983 (1)

C. V. Shank, Science 219, 1027 (1983).
[CrossRef] [PubMed]

1982 (1)

D. Grischkowsky, A. C. Balant, Appl. Phys. Lett. 41, 1(1982).
[CrossRef]

1981 (1)

H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981).
[CrossRef]

1978 (1)

Intracavity frequency switching has previously been employed to study coherent transients. See A. Z. Genack, R. G. Brewer, Phys. Rev. A 17, 1463 (1978); W. S. Warren, A. H. Zewail, J. Chem. Phys. 78, 2279 (1983).
[CrossRef]

1968 (2)

M. Scully, M. J. Stephen, D. C. Burnham, Phys. Rev. 171, 213 (1968). T. W. Mossberg, R. Kachru, S. R. Hartmann, A. M. Flusberg, Phys. Rev. A 20, 1976 (1979).
[CrossRef]

E. B. Treacy, Phys. Lett. 28A, 34 (1968).

1960 (1)

J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, Bell Syst. Tech. J. 39, 745 (1960).

Albersheim, W. J.

J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, Bell Syst. Tech. J. 39, 745 (1960).

Bai, Y. S.

Y. S. Bai, T. W. Mossberg, Appl. Phys. Lett. 45, 1269 (1984).
[CrossRef]

Balant, A. C.

D. Grischkowsky, A. C. Balant, Appl. Phys. Lett. 41, 1(1982).
[CrossRef]

H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981).
[CrossRef]

Brewer, R. G.

Intracavity frequency switching has previously been employed to study coherent transients. See A. Z. Genack, R. G. Brewer, Phys. Rev. A 17, 1463 (1978); W. S. Warren, A. H. Zewail, J. Chem. Phys. 78, 2279 (1983).
[CrossRef]

Burnham, D. C.

M. Scully, M. J. Stephen, D. C. Burnham, Phys. Rev. 171, 213 (1968). T. W. Mossberg, R. Kachru, S. R. Hartmann, A. M. Flusberg, Phys. Rev. A 20, 1976 (1979).
[CrossRef]

Darlington, S.

J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, Bell Syst. Tech. J. 39, 745 (1960).

Genack, A. Z.

Intracavity frequency switching has previously been employed to study coherent transients. See A. Z. Genack, R. G. Brewer, Phys. Rev. A 17, 1463 (1978); W. S. Warren, A. H. Zewail, J. Chem. Phys. 78, 2279 (1983).
[CrossRef]

Grischkowsky, D.

J. E. Rothenberg, D. Grischkowsky, J. Opt. Soc. Am. B 2, 626 (1985).
[CrossRef]

D. Grischkowsky, A. C. Balant, Appl. Phys. Lett. 41, 1(1982).
[CrossRef]

H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981).
[CrossRef]

Klauder, J. R.

J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, Bell Syst. Tech. J. 39, 745 (1960).

Mossberg, T. W.

Y. S. Bai, T. W. Mossberg, Appl. Phys. Lett. 45, 1269 (1984).
[CrossRef]

Nakatsuka, H.

H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981).
[CrossRef]

Price, A. C.

J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, Bell Syst. Tech. J. 39, 745 (1960).

Rothenberg, J. E.

Scully, M.

M. Scully, M. J. Stephen, D. C. Burnham, Phys. Rev. 171, 213 (1968). T. W. Mossberg, R. Kachru, S. R. Hartmann, A. M. Flusberg, Phys. Rev. A 20, 1976 (1979).
[CrossRef]

Shank, C. V.

Stephen, M. J.

M. Scully, M. J. Stephen, D. C. Burnham, Phys. Rev. 171, 213 (1968). T. W. Mossberg, R. Kachru, S. R. Hartmann, A. M. Flusberg, Phys. Rev. A 20, 1976 (1979).
[CrossRef]

Stolen, R. H.

Tomlinson, W. J.

Treacy, E. B.

E. B. Treacy, Phys. Lett. 28A, 34 (1968).

Appl. Phys. Lett. (2)

D. Grischkowsky, A. C. Balant, Appl. Phys. Lett. 41, 1(1982).
[CrossRef]

Y. S. Bai, T. W. Mossberg, Appl. Phys. Lett. 45, 1269 (1984).
[CrossRef]

Bell Syst. Tech. J. (1)

J. R. Klauder, A. C. Price, S. Darlington, W. J. Albersheim, Bell Syst. Tech. J. 39, 745 (1960).

J. Opt. Soc. Am. B (2)

Phys. Lett. (1)

E. B. Treacy, Phys. Lett. 28A, 34 (1968).

Phys. Rev. (1)

M. Scully, M. J. Stephen, D. C. Burnham, Phys. Rev. 171, 213 (1968). T. W. Mossberg, R. Kachru, S. R. Hartmann, A. M. Flusberg, Phys. Rev. A 20, 1976 (1979).
[CrossRef]

Phys. Rev. A (1)

Intracavity frequency switching has previously been employed to study coherent transients. See A. Z. Genack, R. G. Brewer, Phys. Rev. A 17, 1463 (1978); W. S. Warren, A. H. Zewail, J. Chem. Phys. 78, 2279 (1983).
[CrossRef]

Phys. Rev. Lett. (1)

H. Nakatsuka, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 47, 910 (1981).
[CrossRef]

Science (1)

C. V. Shank, Science 219, 1027 (1983).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experiment. RDL, ring dye laser with intracavity ADP crystal to produce frequency chirps; AO, acousto-optic modulator (gated on to produce the excitation pulses); CP, circular polarizer; D, silicon photodiode; BX, boxcar integrator.

Fig. 2
Fig. 2

(a) Schematic of the linear voltage ramp circuit. Q1 (Supertex VN-03E N-channel DMOS) shorts CEO to ground when triggered by VT (+15 V, low source impedance). Q2 (Supertex VP-03E P-channel DMOS) is a variable-current source that recharges CEO when the trigger to Q1 is removed. Q3 (Motorola MPSW42) acts as a variable-current shunt activated by a positive gate. The gate is turned on during the first excitation pulse. (b) Schematic representation of the output and trigger voltages versus time. A gate applied to Q3 decreases the upward-going slope of Vout(t).

Fig. 3
Fig. 3

(a) Heterodyne interference between chirped laser pulse and a constant-frequency FID emitted by the Yb sample. Time increases from left to right. (b) Instantaneous laser frequency versus time derived from (a).

Fig. 4
Fig. 4

Recorded echo and excitation-pulse intensities. Oscillations in the excitation pulses result from heterodyning with atoms excited in the early portions of the pulses. The signal observed at the time of the second pulse is actually the difference between the transmitted intensity of pulse two with pulse one on and off. The difference is nonzero because pulse one partially saturates the sample. As a result, only the output intensities of pulse one and the echo can be directly inferred from the figures. The total chirp bandwidth is the same for both excitation pulses. (a) The intensity of pulse one is adjusted to optimize the echo intensity. (b) The intensity of pulse one has been reduced to show the larger relative size of the echo. The echo is actually smaller in absolute size than in (a).

Fig. 5
Fig. 5

(a) Recorded echo signals for the various total chirp bandwidths shown. As Δνc decreases, both the delay and the duration of the echo increase. At the same time the intensity of the echo decreases. (b) Plot of observed echo duration versus total chirp bandwidth as derived from (a).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ν ν 0 ( 1 - Δ n l / L ) ,
ν ν 0 ( 1 - α V l / L ) .

Metrics