Abstract

We describe a novel apoditic filter characterized by a near-Gaussian transmission function and capable of operating in high-power lasers. By using this filter within the telescopic cavity of a XeCl laser we have obtained a laser output beam with a near-Gaussian intensity distribution. The achieved beam size is comparable with and the beam quality is superior to those achievable with an equivalent diffractive unstable cavity.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Caro, M. C. Gower, C. E. Webb, J. Phys. D 15, 767 (1982).
    [CrossRef]
  2. E. Armandillo, G. Giuliani, Opt. Lett. 8, 274 (1983).
    [CrossRef] [PubMed]
  3. A. E. Siegman, IEEE J. Quantum Electron. QE-1, 35 (1976).
    [CrossRef]
  4. H. Zucker, Bell Syst. Tech. J. 49, 2343 (1970).
  5. L. W. Casperson, S. D. Lunnam, Appl. Opt. 5, 1193 (1975).
    [CrossRef]
  6. J. M. Eggleston, G. Giuliani, R. L. Byer, J. Opt. Soc. Am. 71, 1264 (1981).
    [CrossRef]
  7. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1966).

1983 (1)

1982 (1)

R. G. Caro, M. C. Gower, C. E. Webb, J. Phys. D 15, 767 (1982).
[CrossRef]

1981 (1)

1976 (1)

A. E. Siegman, IEEE J. Quantum Electron. QE-1, 35 (1976).
[CrossRef]

1975 (1)

L. W. Casperson, S. D. Lunnam, Appl. Opt. 5, 1193 (1975).
[CrossRef]

1970 (1)

H. Zucker, Bell Syst. Tech. J. 49, 2343 (1970).

Armandillo, E.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1966).

Byer, R. L.

Caro, R. G.

R. G. Caro, M. C. Gower, C. E. Webb, J. Phys. D 15, 767 (1982).
[CrossRef]

Casperson, L. W.

L. W. Casperson, S. D. Lunnam, Appl. Opt. 5, 1193 (1975).
[CrossRef]

Eggleston, J. M.

Giuliani, G.

Gower, M. C.

R. G. Caro, M. C. Gower, C. E. Webb, J. Phys. D 15, 767 (1982).
[CrossRef]

Lunnam, S. D.

L. W. Casperson, S. D. Lunnam, Appl. Opt. 5, 1193 (1975).
[CrossRef]

Siegman, A. E.

A. E. Siegman, IEEE J. Quantum Electron. QE-1, 35 (1976).
[CrossRef]

Webb, C. E.

R. G. Caro, M. C. Gower, C. E. Webb, J. Phys. D 15, 767 (1982).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1966).

Zucker, H.

H. Zucker, Bell Syst. Tech. J. 49, 2343 (1970).

Appl. Opt. (1)

L. W. Casperson, S. D. Lunnam, Appl. Opt. 5, 1193 (1975).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Zucker, Bell Syst. Tech. J. 49, 2343 (1970).

IEEE J. Quantum Electron. (1)

A. E. Siegman, IEEE J. Quantum Electron. QE-1, 35 (1976).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D (1)

R. G. Caro, M. C. Gower, C. E. Webb, J. Phys. D 15, 767 (1982).
[CrossRef]

Opt. Lett. (1)

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the apoditic filter.

Fig. 2
Fig. 2

Experimental apparatus. M1, totally reflecting A1 mirror, 150-cm focal length; M2, totally reflecting A1 mirror 4.5-cm focal length; L, cylindrical lens, 10-cm focal length; F, apoditic filter.

Fig. 3
Fig. 3

Output-beam intensity distribution: (a) ACTR beam profile, (b) equivalent magnification unstable resonator.

Fig. 4
Fig. 4

Far-field beam intensity distributions for the ACTR (▲) and for the equivalent magnification-unstable resonator (●). The horizontal axis units are normalized to 2f (number) λ.

Fig. 5
Fig. 5

Far-field beam photographs. (a) ACTR beam pattern for d = 0; (b unstable-resonator beam pattern; (c) effect on the ACTR beam pattern of the prism distance (d ≃ 10−5 cm).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ 1 0 - i λ π ω f 2 1 ]
M = ( A + B / q ) ,
E out = 2 E in exp ( - i { K cos θ 2 ( y 2 R y cos 2 θ + x 2 R x ) + tan - 1 [ a 1 - exp ( 2 α ) 1 + exp ( 2 α ) ] } ) × exp ( α ) { [ 1 + exp ( 2 α ) ] 2 + a 2 [ 1 - exp ( 2 α ) ] 2 } 2 , a = cos 2 θ - n 2 β 2 2 n β cos θ j , α = K β n [ d - 1 2 ( y 2 R y cos 2 θ + x 2 R x ) ] , β = ( n 2 sin 2 θ - 1 ) 1 / 2 ,
exp ( α ) / 1 + exp ( 2 α ) .

Metrics