Abstract

A single-pulse, laser-induced-fluorescence diagnostic for the measurement of two-dimensional temperature fields in combustion flows is described. The method uses sheet illumination from a tunable laser to excite planar laser-induced fluorescence in a stable tracer molecule, seeded at constant mole fraction into the flow field. The temporal resolution of this technique is determined by the laser pulse length. Experimental results are presented for a rod-stabilized, premixed methane–air flame, using the Q1(22) line of the nitric oxide A2+(v = 0) ← X 2Π1/2(v = 0) transition (λ ≃ 225.6 nm).

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Kychakoff, R. D. Howe, R. K. Hanson, J. C. McDaniel, Appl. Opt. 21, 3225 (1982).
    [CrossRef] [PubMed]
  2. M. J. Dyer, D. R. Crosley, Opt. Lett. 7, 382 (1982).
    [CrossRef] [PubMed]
  3. S. Cheng, M. Zimmerman, R. B. Miles, Appl. Phys. Lett. 43, 143 (1983).
    [CrossRef]
  4. J. C. McDaniel, B. Hiller, R. K. Hanson, Opt. Lett. 8, 57 (1983).
    [CrossRef]
  5. B. Hiller, R. K. Hanson, Opt. Lett. 10, 206 (1985).
    [CrossRef] [PubMed]
  6. C. Chan, J. W. Daily, Appl. Opt. 19, 1963 (1980).
    [CrossRef] [PubMed]
  7. D. R. Crosley, G P. Smith, Appl. Opt. 19, 517 (1980).
    [CrossRef] [PubMed]
  8. N. Omenetto, J. D. Winefordner, Prog. Anal. Atmos. Spectrosc. 2, 1 (1979).
  9. R. J. Cattolica, Appl. Opt. 22, 1156 (1981).
    [CrossRef]
  10. M. Alden, P. Grafström, H. Lundberg, S. Svanberg, Opt. Lett. 8, 241 (1983).
    [CrossRef] [PubMed]
  11. G. Kychakoff, R. D. Howe, R. K. Hanson, Appl. Opt. 23, 704 (1984).
    [CrossRef] [PubMed]
  12. P. K. Falcone, Ph.D. dissertation (Stanford University, Stanford, Calif., 1981).
  13. G. E. Andrews, D. Bradley, Combust. Flame 19, 275 (1972).
    [CrossRef]
  14. M. Asscher, Y. Haas, J. Chem. Phys. 76, 2115 (1982).
    [CrossRef]
  15. S. N. Suchard, ed., Spectroscopic Data (IFI/Plenum, New York, 1975), Vol. 1B, p. 724.
  16. P. W. Fairchild, G. P. Smith, D. R. Crosley, J. Chem. Phys. 79, 1795 (1983).
    [CrossRef]

1985

1984

1983

M. Alden, P. Grafström, H. Lundberg, S. Svanberg, Opt. Lett. 8, 241 (1983).
[CrossRef] [PubMed]

S. Cheng, M. Zimmerman, R. B. Miles, Appl. Phys. Lett. 43, 143 (1983).
[CrossRef]

P. W. Fairchild, G. P. Smith, D. R. Crosley, J. Chem. Phys. 79, 1795 (1983).
[CrossRef]

J. C. McDaniel, B. Hiller, R. K. Hanson, Opt. Lett. 8, 57 (1983).
[CrossRef]

1982

1981

R. J. Cattolica, Appl. Opt. 22, 1156 (1981).
[CrossRef]

1980

1979

N. Omenetto, J. D. Winefordner, Prog. Anal. Atmos. Spectrosc. 2, 1 (1979).

1972

G. E. Andrews, D. Bradley, Combust. Flame 19, 275 (1972).
[CrossRef]

Alden, M.

Andrews, G. E.

G. E. Andrews, D. Bradley, Combust. Flame 19, 275 (1972).
[CrossRef]

Asscher, M.

M. Asscher, Y. Haas, J. Chem. Phys. 76, 2115 (1982).
[CrossRef]

Bradley, D.

G. E. Andrews, D. Bradley, Combust. Flame 19, 275 (1972).
[CrossRef]

Cattolica, R. J.

R. J. Cattolica, Appl. Opt. 22, 1156 (1981).
[CrossRef]

Chan, C.

Cheng, S.

S. Cheng, M. Zimmerman, R. B. Miles, Appl. Phys. Lett. 43, 143 (1983).
[CrossRef]

Crosley, D. R.

Daily, J. W.

Dyer, M. J.

Fairchild, P. W.

P. W. Fairchild, G. P. Smith, D. R. Crosley, J. Chem. Phys. 79, 1795 (1983).
[CrossRef]

Falcone, P. K.

P. K. Falcone, Ph.D. dissertation (Stanford University, Stanford, Calif., 1981).

Grafström, P.

Haas, Y.

M. Asscher, Y. Haas, J. Chem. Phys. 76, 2115 (1982).
[CrossRef]

Hanson, R. K.

Hiller, B.

Howe, R. D.

Kychakoff, G.

Lundberg, H.

McDaniel, J. C.

Miles, R. B.

S. Cheng, M. Zimmerman, R. B. Miles, Appl. Phys. Lett. 43, 143 (1983).
[CrossRef]

Omenetto, N.

N. Omenetto, J. D. Winefordner, Prog. Anal. Atmos. Spectrosc. 2, 1 (1979).

Smith, G P.

Smith, G. P.

P. W. Fairchild, G. P. Smith, D. R. Crosley, J. Chem. Phys. 79, 1795 (1983).
[CrossRef]

Svanberg, S.

Winefordner, J. D.

N. Omenetto, J. D. Winefordner, Prog. Anal. Atmos. Spectrosc. 2, 1 (1979).

Zimmerman, M.

S. Cheng, M. Zimmerman, R. B. Miles, Appl. Phys. Lett. 43, 143 (1983).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

S. Cheng, M. Zimmerman, R. B. Miles, Appl. Phys. Lett. 43, 143 (1983).
[CrossRef]

Combust. Flame

G. E. Andrews, D. Bradley, Combust. Flame 19, 275 (1972).
[CrossRef]

J. Chem. Phys.

M. Asscher, Y. Haas, J. Chem. Phys. 76, 2115 (1982).
[CrossRef]

P. W. Fairchild, G. P. Smith, D. R. Crosley, J. Chem. Phys. 79, 1795 (1983).
[CrossRef]

Opt. Lett.

Prog. Anal. Atmos. Spectrosc.

N. Omenetto, J. D. Winefordner, Prog. Anal. Atmos. Spectrosc. 2, 1 (1979).

Other

P. K. Falcone, Ph.D. dissertation (Stanford University, Stanford, Calif., 1981).

S. N. Suchard, ed., Spectroscopic Data (IFI/Plenum, New York, 1975), Vol. 1B, p. 724.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Temperature sensitivity of the fluorescence signal (in arbitrary units) for selected transitions of the γ band of NO.

Fig. 2
Fig. 2

Schematic diagram of the experimental setup (Cyl. L., cylindrical lens).

Fig. 3
Fig. 3

Temperature contours for a 9.6 mm × 9.6 mm section in a rod-stabilized (1.5-mm rod diameter) methane–air flame, measured using a PLIF of NO. The lowest seven contours represent 200-K increments (i.e., 500 K, 700 K, …); the last increment is 100 K.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I LIF = C E Δ ν N s B v j F v j ( T ) A A + Q ( T ) ,
I LIF ( T ) ~ N s N F v j ( T ) T = χ s F v j ( T ) T .

Metrics