Abstract

The first known experimental results of real-time optical defect enhancement of a periodic mask are reported. A low-intensity reference wave interferes with the Fourier transform of an object beam to form a hologram in a photo-refractive crystal. The nonlinear properties of the crystal perform a filtering operation, and phase-conjugate readout results in a defect-enhanced image. Defects of size 10 μm × 100 μm have been easily detected with high signal-to-noise ratio, and a discussion of performance limitations is presented.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Knox, P. V. Goedertier, D. Fairbanks, F. Caprari, Solid State Technol. 20(5), 48 (1978).
  2. K. Levy, Solid State Technol. 21(5), 60 (1978).
  3. KLA Instruments Corp., Solid State Technol. 26(1), 45 (1983).
  4. D. B. Novotny, D. R. Ciarlo, Solid State Technol. 21(5), 51 (1978).
    [CrossRef]
  5. R. A. Simpson, D. E. Davis, Proc. Soc. Photo-Opt. Instrum. Eng. 334, 230 (1982).
  6. B. Tsujiyama, K. Saito, K. Kurihara, IEEE Trans. Electron Devices ED-27, 1284 (1980).
    [CrossRef]
  7. L. S. Watkins, Proc. IEEE 57, 1634 (1969).
    [CrossRef]
  8. N. N. Axelrod, Proc. IEEE 60, 447 (1972).
    [CrossRef]
  9. R. A. Heinz, R. L. Odenweller, R. C. Oehrle, L. S. Watkins, Western Elect. Eng. 17, 39 (1973).
  10. R. L. Fusek, K. Harding, L. H. Lin, S. C. Gustafson, Proc. Soc. Photo-Opt. Instrum. Eng. 523, 54 (1985).
  11. E. Ochoa, L. Hesselink, J. W. Goodman, Appl. Opt. 24, 1826 (1985).
    [CrossRef] [PubMed]
  12. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  13. S. I. Ragnarsson, Phys. Scr. 2, 145 (1970).
    [CrossRef]
  14. J. P. Huignard, J. P. Herriau, Appl. Opt. 17, 2671 (1978).
    [CrossRef] [PubMed]
  15. J. Feinberg, Opt. Lett. 5, 330 (1980).
    [CrossRef] [PubMed]
  16. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1978).
  17. J. P. Herriau, J. P. Huignard, P. Aubourg, Appl. Opt. 17, 1851 (1978).
    [CrossRef] [PubMed]

1985 (2)

R. L. Fusek, K. Harding, L. H. Lin, S. C. Gustafson, Proc. Soc. Photo-Opt. Instrum. Eng. 523, 54 (1985).

E. Ochoa, L. Hesselink, J. W. Goodman, Appl. Opt. 24, 1826 (1985).
[CrossRef] [PubMed]

1983 (1)

KLA Instruments Corp., Solid State Technol. 26(1), 45 (1983).

1982 (1)

R. A. Simpson, D. E. Davis, Proc. Soc. Photo-Opt. Instrum. Eng. 334, 230 (1982).

1980 (2)

B. Tsujiyama, K. Saito, K. Kurihara, IEEE Trans. Electron Devices ED-27, 1284 (1980).
[CrossRef]

J. Feinberg, Opt. Lett. 5, 330 (1980).
[CrossRef] [PubMed]

1978 (5)

J. P. Huignard, J. P. Herriau, Appl. Opt. 17, 2671 (1978).
[CrossRef] [PubMed]

J. P. Herriau, J. P. Huignard, P. Aubourg, Appl. Opt. 17, 1851 (1978).
[CrossRef] [PubMed]

D. B. Novotny, D. R. Ciarlo, Solid State Technol. 21(5), 51 (1978).
[CrossRef]

J. D. Knox, P. V. Goedertier, D. Fairbanks, F. Caprari, Solid State Technol. 20(5), 48 (1978).

K. Levy, Solid State Technol. 21(5), 60 (1978).

1973 (1)

R. A. Heinz, R. L. Odenweller, R. C. Oehrle, L. S. Watkins, Western Elect. Eng. 17, 39 (1973).

1972 (1)

N. N. Axelrod, Proc. IEEE 60, 447 (1972).
[CrossRef]

1970 (1)

S. I. Ragnarsson, Phys. Scr. 2, 145 (1970).
[CrossRef]

1969 (2)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

L. S. Watkins, Proc. IEEE 57, 1634 (1969).
[CrossRef]

Aubourg, P.

Axelrod, N. N.

N. N. Axelrod, Proc. IEEE 60, 447 (1972).
[CrossRef]

Bracewell, R. N.

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1978).

Caprari, F.

J. D. Knox, P. V. Goedertier, D. Fairbanks, F. Caprari, Solid State Technol. 20(5), 48 (1978).

Ciarlo, D. R.

D. B. Novotny, D. R. Ciarlo, Solid State Technol. 21(5), 51 (1978).
[CrossRef]

Davis, D. E.

R. A. Simpson, D. E. Davis, Proc. Soc. Photo-Opt. Instrum. Eng. 334, 230 (1982).

Fairbanks, D.

J. D. Knox, P. V. Goedertier, D. Fairbanks, F. Caprari, Solid State Technol. 20(5), 48 (1978).

Feinberg, J.

Fusek, R. L.

R. L. Fusek, K. Harding, L. H. Lin, S. C. Gustafson, Proc. Soc. Photo-Opt. Instrum. Eng. 523, 54 (1985).

Goedertier, P. V.

J. D. Knox, P. V. Goedertier, D. Fairbanks, F. Caprari, Solid State Technol. 20(5), 48 (1978).

Goodman, J. W.

Gustafson, S. C.

R. L. Fusek, K. Harding, L. H. Lin, S. C. Gustafson, Proc. Soc. Photo-Opt. Instrum. Eng. 523, 54 (1985).

Harding, K.

R. L. Fusek, K. Harding, L. H. Lin, S. C. Gustafson, Proc. Soc. Photo-Opt. Instrum. Eng. 523, 54 (1985).

Heinz, R. A.

R. A. Heinz, R. L. Odenweller, R. C. Oehrle, L. S. Watkins, Western Elect. Eng. 17, 39 (1973).

Herriau, J. P.

Hesselink, L.

Huignard, J. P.

Knox, J. D.

J. D. Knox, P. V. Goedertier, D. Fairbanks, F. Caprari, Solid State Technol. 20(5), 48 (1978).

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Kurihara, K.

B. Tsujiyama, K. Saito, K. Kurihara, IEEE Trans. Electron Devices ED-27, 1284 (1980).
[CrossRef]

Levy, K.

K. Levy, Solid State Technol. 21(5), 60 (1978).

Lin, L. H.

R. L. Fusek, K. Harding, L. H. Lin, S. C. Gustafson, Proc. Soc. Photo-Opt. Instrum. Eng. 523, 54 (1985).

Novotny, D. B.

D. B. Novotny, D. R. Ciarlo, Solid State Technol. 21(5), 51 (1978).
[CrossRef]

Ochoa, E.

Odenweller, R. L.

R. A. Heinz, R. L. Odenweller, R. C. Oehrle, L. S. Watkins, Western Elect. Eng. 17, 39 (1973).

Oehrle, R. C.

R. A. Heinz, R. L. Odenweller, R. C. Oehrle, L. S. Watkins, Western Elect. Eng. 17, 39 (1973).

Ragnarsson, S. I.

S. I. Ragnarsson, Phys. Scr. 2, 145 (1970).
[CrossRef]

Saito, K.

B. Tsujiyama, K. Saito, K. Kurihara, IEEE Trans. Electron Devices ED-27, 1284 (1980).
[CrossRef]

Simpson, R. A.

R. A. Simpson, D. E. Davis, Proc. Soc. Photo-Opt. Instrum. Eng. 334, 230 (1982).

Tsujiyama, B.

B. Tsujiyama, K. Saito, K. Kurihara, IEEE Trans. Electron Devices ED-27, 1284 (1980).
[CrossRef]

Watkins, L. S.

R. A. Heinz, R. L. Odenweller, R. C. Oehrle, L. S. Watkins, Western Elect. Eng. 17, 39 (1973).

L. S. Watkins, Proc. IEEE 57, 1634 (1969).
[CrossRef]

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

IEEE Trans. Electron Devices (1)

B. Tsujiyama, K. Saito, K. Kurihara, IEEE Trans. Electron Devices ED-27, 1284 (1980).
[CrossRef]

Opt. Lett. (1)

Phys. Scr. (1)

S. I. Ragnarsson, Phys. Scr. 2, 145 (1970).
[CrossRef]

Proc. IEEE (2)

L. S. Watkins, Proc. IEEE 57, 1634 (1969).
[CrossRef]

N. N. Axelrod, Proc. IEEE 60, 447 (1972).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

R. A. Simpson, D. E. Davis, Proc. Soc. Photo-Opt. Instrum. Eng. 334, 230 (1982).

R. L. Fusek, K. Harding, L. H. Lin, S. C. Gustafson, Proc. Soc. Photo-Opt. Instrum. Eng. 523, 54 (1985).

Solid State Technol. (4)

J. D. Knox, P. V. Goedertier, D. Fairbanks, F. Caprari, Solid State Technol. 20(5), 48 (1978).

K. Levy, Solid State Technol. 21(5), 60 (1978).

KLA Instruments Corp., Solid State Technol. 26(1), 45 (1983).

D. B. Novotny, D. R. Ciarlo, Solid State Technol. 21(5), 51 (1978).
[CrossRef]

Western Elect. Eng. (1)

R. A. Heinz, R. L. Odenweller, R. C. Oehrle, L. S. Watkins, Western Elect. Eng. 17, 39 (1973).

Other (1)

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diffraction efficiency versus beam ratio. Shown is a typical curve for photorefractive BSO or BGO.

Fig. 2
Fig. 2

Experimental setup. VA/BS, variable attenuator/ beam splitter; BS, beam splitter; CL, collimating lens; PCB, polarizing-cube beam splitter; FTL, Fourier-transform lens.

Fig. 3
Fig. 3

Input mask and output-defect-enhanced image. The coordinates of the seven defects, measured in units of numbers of squares and taking the center of the lower left-hand square to be (0, 0) are

Fig.4
Fig.4

Intensity line scan of 10 μm × 100 μm defect. Graph illustrating the signal-to-noise ratio obtained for the smallest defect.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η = exp [ - ( α d / cos θ ) ] sin 2 ( π Δ n d λ cos θ )
T ( u , v ) 2 1 ( λ f ) 2 { ( W L ) 2 1 a 4 n m P 2 ( n a , m a ) × sinc 2 [ W ( ( u - n a ) ] sinc 2 [ L ( v - m a ) ] + ( w l ) 2 sinc 2 ( w u ) sinc 2 ( l v ) } ,
I i ( W L λ f ) 2 P 2 ( 0 , 0 ) a 4 1 D > I r ,             I i ( w l λ f ) 2 < I r .
I i ( w l λ f ) 2 | 1 a 2 n m P ( n a , m a ) sinc [ w ( n a ) ] sinc [ l ( m a ) ] | 2 < I r .

Metrics