Abstract

We demonstrate optical-beam phase conjugation by the process of two-beam coupling in photorefractive barium titanate. The incident, image-bearing beam causes exponential gain for counterpropagating waves, which are fed by noise and emerge with a power of the order of 10% of the incident beam and phase conjugate to it. This is expected from the calculated plane-wave gain plus the analogy to the theory of phase conjugation of complex wave fronts by stimulated Brillouin backscattering. We conjugate beams at either 515 or 488 nm at between 10- and 50-mW power, and find, as expected, no frequency shift (<1 Hz) in the process.

© 1985 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mutually pumped phase conjugation in photorefractive strontium barium niobate: theory and experiment

M. D. Ewbank, R. A. Vazquez, R. R. Neurgaonkar, and Jack Feinberg
J. Opt. Soc. Am. B 7(12) 2306-2316 (1990)

Observations of internal beam production in barium titanate phase conjugators

Andrew V. Nowak, Thomas R. Moore, and Robert A. Fisher
J. Opt. Soc. Am. B 5(9) 1864-1878 (1988)

Rhodium-doped barium titanate phase-conjugate mirror for an all-solid-state, high-repetition-rate, diode-pumped Nd:YAG master-oscillator power amplifier laser

Arnaud Brignon, Stéphane Sénac, Jean-Luc Ayral, and Jean-Pierre Huignard
Appl. Opt. 37(18) 3990-3995 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription