Abstract

In this Letter, a new kind of active optical bistability is discussed. The basic principle underlying the operation of the optically bistable laser is based on stable–unstable cavity configuration transitions of an active optical resonator. Generally speaking, a laser system showing both pump- and laser-induced lensing (focusing or defocusing) effects may display such a hysteresis loop in its input–output characteristics. This bistability is experimentally demonstrated using a flashlamp-pumped, Nd-doped gadolinium gallium garnet rod placed in a plane-parallel optical cavity.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, C. M. Bowden, M. Cliftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1980).
  2. P. W. Smith, W. J. Tomlinson, IEEE Spectrum 18 (6), 26 (1981);D. A. B. Miller, Laser Focus 18 (4), 79 (1982).
  3. J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, A. E. Kaplan, Opt. Lett. 6, 345 (1981).
    [CrossRef] [PubMed]
  4. H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).
  5. E. P. Riedel, G. D. Baldwin, J. Appl. Phys. 38, 2720 (1967).
    [CrossRef]
  6. F. W. Quelle, Appl. Opt. 5, 633 (1966).
    [CrossRef] [PubMed]
  7. W. Koechner, Appl. Opt. 9, 2548 (1970).
    [CrossRef] [PubMed]
  8. J. Fesquet, H. Irla, Appl. Opt. 21, 4070 (1982).
    [CrossRef] [PubMed]
  9. H. Welling, C. J. Bickart, J. Opt. Soc. Am. 56, 611 (1966).
    [CrossRef]
  10. M. Bass, Center for Laser Studies, University of Southern California,Los Angeles, California 90007 (personal communication).
  11. M. Sparks, J. Appl. Phys. 42, 5029 (1971).
    [CrossRef]
  12. S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, in Laser Handbook, F. T. Arecchi, E. O. Schulz-DuBois, eds. (North-Holland, Amsterdam, 1972).
  13. T. Honda, T. Kuwano, T. Masumoto, K. Shiroki, J. Appl. Phys. 51, 896 (1980).
    [CrossRef]

1982 (1)

1981 (2)

P. W. Smith, W. J. Tomlinson, IEEE Spectrum 18 (6), 26 (1981);D. A. B. Miller, Laser Focus 18 (4), 79 (1982).

J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, A. E. Kaplan, Opt. Lett. 6, 345 (1981).
[CrossRef] [PubMed]

1980 (1)

T. Honda, T. Kuwano, T. Masumoto, K. Shiroki, J. Appl. Phys. 51, 896 (1980).
[CrossRef]

1971 (1)

M. Sparks, J. Appl. Phys. 42, 5029 (1971).
[CrossRef]

1970 (1)

1967 (1)

E. P. Riedel, G. D. Baldwin, J. Appl. Phys. 38, 2720 (1967).
[CrossRef]

1966 (2)

1965 (1)

H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

Akhmanov, S. A.

S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, in Laser Handbook, F. T. Arecchi, E. O. Schulz-DuBois, eds. (North-Holland, Amsterdam, 1972).

Baldwin, G. D.

E. P. Riedel, G. D. Baldwin, J. Appl. Phys. 38, 2720 (1967).
[CrossRef]

Bass, M.

M. Bass, Center for Laser Studies, University of Southern California,Los Angeles, California 90007 (personal communication).

Bickart, C. J.

Bjorkholm, J. E.

Fesquet, J.

Honda, T.

T. Honda, T. Kuwano, T. Masumoto, K. Shiroki, J. Appl. Phys. 51, 896 (1980).
[CrossRef]

Irla, H.

Kaplan, A. E.

Khokhlov, R. V.

S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, in Laser Handbook, F. T. Arecchi, E. O. Schulz-DuBois, eds. (North-Holland, Amsterdam, 1972).

Koechner, W.

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

Kuwano, T.

T. Honda, T. Kuwano, T. Masumoto, K. Shiroki, J. Appl. Phys. 51, 896 (1980).
[CrossRef]

Masumoto, T.

T. Honda, T. Kuwano, T. Masumoto, K. Shiroki, J. Appl. Phys. 51, 896 (1980).
[CrossRef]

Quelle, F. W.

Riedel, E. P.

E. P. Riedel, G. D. Baldwin, J. Appl. Phys. 38, 2720 (1967).
[CrossRef]

Shiroki, K.

T. Honda, T. Kuwano, T. Masumoto, K. Shiroki, J. Appl. Phys. 51, 896 (1980).
[CrossRef]

Smith, P. W.

P. W. Smith, W. J. Tomlinson, IEEE Spectrum 18 (6), 26 (1981);D. A. B. Miller, Laser Focus 18 (4), 79 (1982).

J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, A. E. Kaplan, Opt. Lett. 6, 345 (1981).
[CrossRef] [PubMed]

Sparks, M.

M. Sparks, J. Appl. Phys. 42, 5029 (1971).
[CrossRef]

Sukhorukov, A. P.

S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, in Laser Handbook, F. T. Arecchi, E. O. Schulz-DuBois, eds. (North-Holland, Amsterdam, 1972).

Tomlinson, W. J.

J. E. Bjorkholm, P. W. Smith, W. J. Tomlinson, A. E. Kaplan, Opt. Lett. 6, 345 (1981).
[CrossRef] [PubMed]

P. W. Smith, W. J. Tomlinson, IEEE Spectrum 18 (6), 26 (1981);D. A. B. Miller, Laser Focus 18 (4), 79 (1982).

Welling, H.

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965).

IEEE Spectrum (1)

P. W. Smith, W. J. Tomlinson, IEEE Spectrum 18 (6), 26 (1981);D. A. B. Miller, Laser Focus 18 (4), 79 (1982).

J. Appl. Phys. (3)

E. P. Riedel, G. D. Baldwin, J. Appl. Phys. 38, 2720 (1967).
[CrossRef]

M. Sparks, J. Appl. Phys. 42, 5029 (1971).
[CrossRef]

T. Honda, T. Kuwano, T. Masumoto, K. Shiroki, J. Appl. Phys. 51, 896 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Other (3)

M. Bass, Center for Laser Studies, University of Southern California,Los Angeles, California 90007 (personal communication).

See, for example, C. M. Bowden, M. Cliftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1980).

S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, in Laser Handbook, F. T. Arecchi, E. O. Schulz-DuBois, eds. (North-Holland, Amsterdam, 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Geometry and (b) stability diagram of a resonator containing an internal thin lens. The dashed line indicates the operation points of an active resonator of symmetrical cavity (i.e., L1 = L2 and R1 = R2) whose lensing behavior varies with operation conditions, e.g., for thermal focusing in laser rods.

Fig. 2
Fig. 2

Graphic illustration of optical bistability due to stable–unstable cavity transition of an active resonator. (a) Hypothetical plot of 1/feff versus Pin with laser action as a parameter. The dashed line indicates the borderline condition for the stable and unstable configuration regions (see text). (b) Output–input relationship deduced from the above graphic solution according to the model described in the text. Pth is the threshold input power.

Fig. 3
Fig. 3

Graphic demonstration of hysteretic behavior for the case when f(Pin) is positive and f(Pl) is negative.

Fig. 4
Fig. 4

Experimental input-output characteristics of an active resonator containing a GGG:Nd rod as the laser medium. Circles indicate data taken with increasing input power. Triangles indicate data taken with decreasing input power.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g 1 = 1 L 2 / f L 0 / R 1 , g 2 = 1 L 1 / f L 0 / R 2 ,
1 / f eff = 1 / f ( P in ) + 1 / f ( P l ) ,

Metrics