Abstract

With sufficient Raman gain to compensate exactly for net fiber energy loss, we have demonstrated distortionless propagation of 10-psec FWHM fundamental (N = 1) soliton pulses (λ = 1.56 μm) over a 10-km length of singlemode fiber. The implications of this experiment for development of an all-optical, high-bit-rate, long-distance telecommunications system are discussed briefly.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
    [Crossref]
  2. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
    [Crossref]
  3. R. H. Stolen, E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
    [Crossref]
  4. R. H. Stolen, Proc. IEEE 68, 1232 (1980).
    [Crossref]
  5. A. Hasegawa, Opt. Lett. 8, 650 (1983).
    [Crossref] [PubMed]
  6. A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981);strictly speaking, only the case of exponential energy decay is treated there. However, proof is readily extended to the general case [J. P. Gordon, AT&T Bell Laboratories, Holmdel, New Jersey 07733.
    [Crossref] [PubMed]
  7. L. F. Mollenauer, N. D. Vieira, L. Szeto, Opt. Lett. 7, 414 (1982).
    [Crossref] [PubMed]
  8. R. Csencsits, P. J. Lemaire, W. A. Reed, D. S. Shenk, K. R. Walker, in Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1984), paper TU13.
  9. R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
    [Crossref]
  10. R. H. Stolen, W. Pleibel, J. R. Simpson, J. Lightwave Technol. LT-2, 639 (1984).
    [Crossref]
  11. A. Hasegawa, Appl. Opt. 23, 3302 (1984).
    [Crossref] [PubMed]
  12. J. P. Gordon, H. A. Haus, AT&T Bell Laboratories, Holmdel, New Jersey 07733 (personal communication).

1984 (2)

R. H. Stolen, W. Pleibel, J. R. Simpson, J. Lightwave Technol. LT-2, 639 (1984).
[Crossref]

A. Hasegawa, Appl. Opt. 23, 3302 (1984).
[Crossref] [PubMed]

1983 (1)

1982 (1)

1981 (1)

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981);strictly speaking, only the case of exponential energy decay is treated there. However, proof is readily extended to the general case [J. P. Gordon, AT&T Bell Laboratories, Holmdel, New Jersey 07733.
[Crossref] [PubMed]

1980 (2)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[Crossref]

R. H. Stolen, Proc. IEEE 68, 1232 (1980).
[Crossref]

1979 (1)

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[Crossref]

1973 (2)

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

R. H. Stolen, E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[Crossref]

Csencsits, R.

R. Csencsits, P. J. Lemaire, W. A. Reed, D. S. Shenk, K. R. Walker, in Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1984), paper TU13.

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[Crossref]

J. P. Gordon, H. A. Haus, AT&T Bell Laboratories, Holmdel, New Jersey 07733 (personal communication).

Hasegawa, A.

A. Hasegawa, Appl. Opt. 23, 3302 (1984).
[Crossref] [PubMed]

A. Hasegawa, Opt. Lett. 8, 650 (1983).
[Crossref] [PubMed]

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981);strictly speaking, only the case of exponential energy decay is treated there. However, proof is readily extended to the general case [J. P. Gordon, AT&T Bell Laboratories, Holmdel, New Jersey 07733.
[Crossref] [PubMed]

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

Haus, H. A.

J. P. Gordon, H. A. Haus, AT&T Bell Laboratories, Holmdel, New Jersey 07733 (personal communication).

Ippen, E. P.

R. H. Stolen, E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[Crossref]

Kodama, Y.

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981);strictly speaking, only the case of exponential energy decay is treated there. However, proof is readily extended to the general case [J. P. Gordon, AT&T Bell Laboratories, Holmdel, New Jersey 07733.
[Crossref] [PubMed]

Lemaire, P. J.

R. Csencsits, P. J. Lemaire, W. A. Reed, D. S. Shenk, K. R. Walker, in Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1984), paper TU13.

Mollenauer, L. F.

L. F. Mollenauer, N. D. Vieira, L. Szeto, Opt. Lett. 7, 414 (1982).
[Crossref] [PubMed]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[Crossref]

Pleibel, W.

R. H. Stolen, W. Pleibel, J. R. Simpson, J. Lightwave Technol. LT-2, 639 (1984).
[Crossref]

Reed, W. A.

R. Csencsits, P. J. Lemaire, W. A. Reed, D. S. Shenk, K. R. Walker, in Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1984), paper TU13.

Shenk, D. S.

R. Csencsits, P. J. Lemaire, W. A. Reed, D. S. Shenk, K. R. Walker, in Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1984), paper TU13.

Simpson, J. R.

R. H. Stolen, W. Pleibel, J. R. Simpson, J. Lightwave Technol. LT-2, 639 (1984).
[Crossref]

Stolen, R. H.

R. H. Stolen, W. Pleibel, J. R. Simpson, J. Lightwave Technol. LT-2, 639 (1984).
[Crossref]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[Crossref]

R. H. Stolen, Proc. IEEE 68, 1232 (1980).
[Crossref]

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[Crossref]

R. H. Stolen, E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[Crossref]

Szeto, L.

Tappert, F.

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

Vieira, N. D.

Walker, K. R.

R. Csencsits, P. J. Lemaire, W. A. Reed, D. S. Shenk, K. R. Walker, in Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1984), paper TU13.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Hasegawa, F. Tappert, Appl. Phys. Lett. 23, 142 (1973).
[Crossref]

R. H. Stolen, E. P. Ippen, Appl. Phys. Lett. 22, 276 (1973).
[Crossref]

IEEE J. Quantum Electron. (1)

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[Crossref]

J. Lightwave Technol. (1)

R. H. Stolen, W. Pleibel, J. R. Simpson, J. Lightwave Technol. LT-2, 639 (1984).
[Crossref]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[Crossref]

Proc. IEEE (2)

R. H. Stolen, Proc. IEEE 68, 1232 (1980).
[Crossref]

A. Hasegawa, Y. Kodama, Proc. IEEE 69, 1145 (1981);strictly speaking, only the case of exponential energy decay is treated there. However, proof is readily extended to the general case [J. P. Gordon, AT&T Bell Laboratories, Holmdel, New Jersey 07733.
[Crossref] [PubMed]

Other (2)

R. Csencsits, P. J. Lemaire, W. A. Reed, D. S. Shenk, K. R. Walker, in Digest of Conference on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1984), paper TU13.

J. P. Gordon, H. A. Haus, AT&T Bell Laboratories, Holmdel, New Jersey 07733 (personal communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Behavior of pulse energies with counterpropagating pump beam in fiber spans with net unity gain. Above: Gain/loss coefficients (see text) in a 50-km span. Below: Normalized pulse energies according to Eq. (3) for spans of various fixed lengths.

Fig. 2
Fig. 2

Schematic of the apparatus; pulses emerge from the 10-km fiber polarized normally to the plane of the figure; the pump beam is initially polarized in the plane of the figure. (For other details, see text.)

Fig. 3
Fig. 3

Autocorrelation traces of pulses at the output end of the 10-km fiber, with and without gain, and of the laser output pulses. (Note that the height of the no-gain curve has been considerably magnified to facilitate comparison of pulse widths.)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d E / E = ( α s + α g ) d z = α eff d z ,
α g = g exp [ α p ( L z ) ]
ln ( E / E 0 ) = α s { z 1 α p exp ( α p z m ) [ exp ( α p z ) 1 ] } ,
z m = 1 α p ln [ exp ( α p L ) 1 α p L ] .
z 0 = 0.322 π 2 c λ 2 τ 2 | D | ,
α eff z 0 < 0.05

Metrics