Abstract

We have built a nonplanar ring oscillator with the resonator contained entirely within a Nd:YAG crystal. When the oscillator was placed in a magnetic field, unidirectional oscillation was obtained with a pump-limited, single-axial-mode output of 163 mW.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kane, B. Zhou, R. L. Byer, Appl. Opt. 23, 2477 (1984).
    [CrossRef] [PubMed]
  2. H. G. Danielmeyer, in Lasers, Vol. 4, A. K. Levine, A. J. DeMaria, eds. (Marcel Dekker, New York, 1976).
  3. A. R. Clobes, M. J. Brienza, Appl. Phys. Lett. 21, 265 (1972).
    [CrossRef]
  4. Product literature for Spectra-Physics 380 series ring dye lasers and Coherent 699 series ring dye lasers.
  5. B. Zhou, T. J. Kane, R. L. Byer, in Digest of the Thirteenth International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), paper MEEZ;B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, Opt. Lett. 10, 62 (1985).
    [CrossRef] [PubMed]
  6. T. F. Johnson, W. Proffitt, IEEE J. Quantum Electron. QE-16, 483 (1980).
    [CrossRef]
  7. T. A. Dorschner, Proc. Soc. Photo-Opt. Instrum. Eng. 412, 192 (1983).
  8. Yu. D. Golyaev, K. N. Evtyukhov, L. N. Kaptsov, S. P. Smyshlyaev, Sov. J. Quantum Electron. 11, 1421 (1981), and references therein.
    [CrossRef]
  9. F. Biraben, Opt. Commun. 29, 353 (1979).
    [CrossRef]
  10. Verdet constants were measured by comparison to the known value for the terbium-doped glass FR-5. For Nd:YAG, the constant was measured to be 103 ± 15°/T m. For GGG doped with 0.5% neodymium, we measured 387 ± 30°/T m.

1984 (1)

1983 (1)

T. A. Dorschner, Proc. Soc. Photo-Opt. Instrum. Eng. 412, 192 (1983).

1981 (1)

Yu. D. Golyaev, K. N. Evtyukhov, L. N. Kaptsov, S. P. Smyshlyaev, Sov. J. Quantum Electron. 11, 1421 (1981), and references therein.
[CrossRef]

1980 (1)

T. F. Johnson, W. Proffitt, IEEE J. Quantum Electron. QE-16, 483 (1980).
[CrossRef]

1979 (1)

F. Biraben, Opt. Commun. 29, 353 (1979).
[CrossRef]

1972 (1)

A. R. Clobes, M. J. Brienza, Appl. Phys. Lett. 21, 265 (1972).
[CrossRef]

Biraben, F.

F. Biraben, Opt. Commun. 29, 353 (1979).
[CrossRef]

Brienza, M. J.

A. R. Clobes, M. J. Brienza, Appl. Phys. Lett. 21, 265 (1972).
[CrossRef]

Byer, R. L.

T. J. Kane, B. Zhou, R. L. Byer, Appl. Opt. 23, 2477 (1984).
[CrossRef] [PubMed]

B. Zhou, T. J. Kane, R. L. Byer, in Digest of the Thirteenth International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), paper MEEZ;B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, Opt. Lett. 10, 62 (1985).
[CrossRef] [PubMed]

Clobes, A. R.

A. R. Clobes, M. J. Brienza, Appl. Phys. Lett. 21, 265 (1972).
[CrossRef]

Danielmeyer, H. G.

H. G. Danielmeyer, in Lasers, Vol. 4, A. K. Levine, A. J. DeMaria, eds. (Marcel Dekker, New York, 1976).

Dorschner, T. A.

T. A. Dorschner, Proc. Soc. Photo-Opt. Instrum. Eng. 412, 192 (1983).

Evtyukhov, K. N.

Yu. D. Golyaev, K. N. Evtyukhov, L. N. Kaptsov, S. P. Smyshlyaev, Sov. J. Quantum Electron. 11, 1421 (1981), and references therein.
[CrossRef]

Golyaev, Yu. D.

Yu. D. Golyaev, K. N. Evtyukhov, L. N. Kaptsov, S. P. Smyshlyaev, Sov. J. Quantum Electron. 11, 1421 (1981), and references therein.
[CrossRef]

Johnson, T. F.

T. F. Johnson, W. Proffitt, IEEE J. Quantum Electron. QE-16, 483 (1980).
[CrossRef]

Kane, T. J.

T. J. Kane, B. Zhou, R. L. Byer, Appl. Opt. 23, 2477 (1984).
[CrossRef] [PubMed]

B. Zhou, T. J. Kane, R. L. Byer, in Digest of the Thirteenth International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), paper MEEZ;B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, Opt. Lett. 10, 62 (1985).
[CrossRef] [PubMed]

Kaptsov, L. N.

Yu. D. Golyaev, K. N. Evtyukhov, L. N. Kaptsov, S. P. Smyshlyaev, Sov. J. Quantum Electron. 11, 1421 (1981), and references therein.
[CrossRef]

Proffitt, W.

T. F. Johnson, W. Proffitt, IEEE J. Quantum Electron. QE-16, 483 (1980).
[CrossRef]

Smyshlyaev, S. P.

Yu. D. Golyaev, K. N. Evtyukhov, L. N. Kaptsov, S. P. Smyshlyaev, Sov. J. Quantum Electron. 11, 1421 (1981), and references therein.
[CrossRef]

Zhou, B.

T. J. Kane, B. Zhou, R. L. Byer, Appl. Opt. 23, 2477 (1984).
[CrossRef] [PubMed]

B. Zhou, T. J. Kane, R. L. Byer, in Digest of the Thirteenth International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), paper MEEZ;B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, Opt. Lett. 10, 62 (1985).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. R. Clobes, M. J. Brienza, Appl. Phys. Lett. 21, 265 (1972).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. F. Johnson, W. Proffitt, IEEE J. Quantum Electron. QE-16, 483 (1980).
[CrossRef]

Opt. Commun. (1)

F. Biraben, Opt. Commun. 29, 353 (1979).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

T. A. Dorschner, Proc. Soc. Photo-Opt. Instrum. Eng. 412, 192 (1983).

Sov. J. Quantum Electron. (1)

Yu. D. Golyaev, K. N. Evtyukhov, L. N. Kaptsov, S. P. Smyshlyaev, Sov. J. Quantum Electron. 11, 1421 (1981), and references therein.
[CrossRef]

Other (4)

Verdet constants were measured by comparison to the known value for the terbium-doped glass FR-5. For Nd:YAG, the constant was measured to be 103 ± 15°/T m. For GGG doped with 0.5% neodymium, we measured 387 ± 30°/T m.

Product literature for Spectra-Physics 380 series ring dye lasers and Coherent 699 series ring dye lasers.

B. Zhou, T. J. Kane, R. L. Byer, in Digest of the Thirteenth International Quantum Electronics Conference (Optical Society of America, Washington, D.C., 1984), paper MEEZ;B. Zhou, T. J. Kane, G. J. Dixon, R. L. Byer, Opt. Lett. 10, 62 (1985).
[CrossRef] [PubMed]

H. G. Danielmeyer, in Lasers, Vol. 4, A. K. Levine, A. J. DeMaria, eds. (Marcel Dekker, New York, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The MISER laser design. Polarization selection takes place at the curved, partially transmitting face (point A). At points B, C, and D, total internal reflection occurs. A magnetic field H is applied to establish unidirectional oscillation. Magnetic rotation takes place along segments AB and DA. The focused pump laser beam enters the crystal at point A, and the output beam emerges at the same point.

Fig. 2
Fig. 2

(a) An interferogram of the MISER output with the magnetic field present, showing a single axial mode. (b) With the field removed, oscillation occurs in five axial modes. The free spectral range of the interferometer is 1 cm−1; mode spacing is 0.064 cm−1.

Fig. 3
Fig. 3

The image rotation of a nonplanar resonator creates nonrectangular transverse-mode patterns. Four are pictured here.

Metrics