Abstract

The temporal profile of ultrashort optical pulses may be tailored by physically manipulating the phase and the amplitude of frequency components that are spatially dispersed within a grating pulse compressor. Arbitrary pulse shapes may be synthesized subject only to the usual restrictions imposed by finite bandwidth and spatial resolution. We demonstrate this technique by generating a burst of evenly spaced picosecond pulses, a pulse doublet with odd field symmetry, and a burst of evenly spaced pulse doublets with odd field symmetry.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A different approach to Fourier pulse shaping, which uses nonchirped optical pulses, has been discussed by C. Froehly, B. Colombeau, M. Vampouille, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), p. 115.
  2. J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
    [CrossRef]
  3. J. Debois, F. Gires, P. Tournois, IEEE J. Quantum Electron. QE-9, 213 (1973); J. Agostinelli, G. Harvey, T. Stone, C. Gabel, Appl. Opt. 18, 2500 (1979).
    [CrossRef] [PubMed]
  4. A. M. Johnson, R. H. Stolen, W. M. Simpson, Appl. Phys. Lett. 44, 729 (1984).
    [CrossRef]
  5. R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson (submitted to IEEE J. Quantum Electron.).
  6. J. E. Rothenberg, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 53, 552 (1984).
    [CrossRef]

1985 (1)

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

1984 (2)

A. M. Johnson, R. H. Stolen, W. M. Simpson, Appl. Phys. Lett. 44, 729 (1984).
[CrossRef]

J. E. Rothenberg, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 53, 552 (1984).
[CrossRef]

1973 (1)

J. Debois, F. Gires, P. Tournois, IEEE J. Quantum Electron. QE-9, 213 (1973); J. Agostinelli, G. Harvey, T. Stone, C. Gabel, Appl. Opt. 18, 2500 (1979).
[CrossRef] [PubMed]

Balant, A. C.

J. E. Rothenberg, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 53, 552 (1984).
[CrossRef]

Colombeau, B.

A different approach to Fourier pulse shaping, which uses nonchirped optical pulses, has been discussed by C. Froehly, B. Colombeau, M. Vampouille, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), p. 115.

Debois, J.

J. Debois, F. Gires, P. Tournois, IEEE J. Quantum Electron. QE-9, 213 (1973); J. Agostinelli, G. Harvey, T. Stone, C. Gabel, Appl. Opt. 18, 2500 (1979).
[CrossRef] [PubMed]

Froehly, C.

A different approach to Fourier pulse shaping, which uses nonchirped optical pulses, has been discussed by C. Froehly, B. Colombeau, M. Vampouille, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), p. 115.

Gires, F.

J. Debois, F. Gires, P. Tournois, IEEE J. Quantum Electron. QE-9, 213 (1973); J. Agostinelli, G. Harvey, T. Stone, C. Gabel, Appl. Opt. 18, 2500 (1979).
[CrossRef] [PubMed]

Grischkowsky, D.

J. E. Rothenberg, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 53, 552 (1984).
[CrossRef]

Heritage, J. P.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson (submitted to IEEE J. Quantum Electron.).

Johnson, A. M.

A. M. Johnson, R. H. Stolen, W. M. Simpson, Appl. Phys. Lett. 44, 729 (1984).
[CrossRef]

Rothenberg, J. E.

J. E. Rothenberg, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 53, 552 (1984).
[CrossRef]

Simpson, W. M.

A. M. Johnson, R. H. Stolen, W. M. Simpson, Appl. Phys. Lett. 44, 729 (1984).
[CrossRef]

Stolen, R. H.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

A. M. Johnson, R. H. Stolen, W. M. Simpson, Appl. Phys. Lett. 44, 729 (1984).
[CrossRef]

Thurston, R. N.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson (submitted to IEEE J. Quantum Electron.).

Tomlinson, W. J.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson (submitted to IEEE J. Quantum Electron.).

Tournois, P.

J. Debois, F. Gires, P. Tournois, IEEE J. Quantum Electron. QE-9, 213 (1973); J. Agostinelli, G. Harvey, T. Stone, C. Gabel, Appl. Opt. 18, 2500 (1979).
[CrossRef] [PubMed]

Vampouille, M.

A different approach to Fourier pulse shaping, which uses nonchirped optical pulses, has been discussed by C. Froehly, B. Colombeau, M. Vampouille, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), p. 115.

Weiner, A. M.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson (submitted to IEEE J. Quantum Electron.).

Appl. Phys. Lett. (2)

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, R. H. Stolen, Appl. Phys. Lett. 47, 87 (1985).
[CrossRef]

A. M. Johnson, R. H. Stolen, W. M. Simpson, Appl. Phys. Lett. 44, 729 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Debois, F. Gires, P. Tournois, IEEE J. Quantum Electron. QE-9, 213 (1973); J. Agostinelli, G. Harvey, T. Stone, C. Gabel, Appl. Opt. 18, 2500 (1979).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. E. Rothenberg, D. Grischkowsky, A. C. Balant, Phys. Rev. Lett. 53, 552 (1984).
[CrossRef]

Other (2)

A different approach to Fourier pulse shaping, which uses nonchirped optical pulses, has been discussed by C. Froehly, B. Colombeau, M. Vampouille, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), p. 115.

R. N. Thurston, J. P. Heritage, A. M. Weiner, W. J. Tomlinson (submitted to IEEE J. Quantum Electron.).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental arrangement. The spectral amplitude and phase filters are inserted adjacent to the return mirror M and the spectral window.

Fig. 2
Fig. 2

Power spectra produced by evenly spaced opaque stripes. (a) Spectral window adjusted to pass two principal spectral features. (b) Spectral window opened to pass four principal features.

Fig. 3
Fig. 3

Autocorrelation traces produced by the simple amplitude mask used in Fig. 2: (a) corresponding to spectrum in Fig. 2(a), (b) corresponding to the spectrum shown in Fig. 2(b). Dashed lines are calculated.

Fig. 4
Fig. 4

Autocorrelation traces for phase retardation of higher-frequency half of spectrum. (a) phase shift of (2n + 1)π, n an integer, resulting in odd temporal symmetry of optical field: (b) phase shift (2n)π resulting in even field symmetry.

Fig. 5
Fig. 5

Autocorrelation traces obtained for combined amplitude and phase mask resulting in a sequence of odd pulses.

Metrics