Abstract

We studied the growth from amplified spontaneous emission of stimulated Raman scattering in air using a 20-cm-diameter, linearly polarized, 1053-nm laser beam propagating over a 20–150-in air path. For 2.5-nsec square pulses we found about 1% conversion on the S(8) and S(10) rotational Raman lines of nitrogen at an intensity–length product of 12 TW/cm, which implies a small-signal gain coefficient of 2.5 cm/TW. For 1-nsec square pulses, 1% conversion requires an intensity–length product of about 16 TW/cm. The beam quality deteriorates severely above Raman threshold.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Averbakh, A. I. Makarov, V. I. Talanov, Sov. J. Quantum Electron. 8, 472 (1978).
    [Crossref]
  2. G. C. Herring, M. J. Dyer, W. K. Bischel, Opt. Lett. (to be published); J. Jacob, Science Research Corporation, Somerville, Mass., and N. A. Kurnit, Los Alamos National Laboratory (personal communications).
  3. W. W. Simmons, R. O. Godwin, J. Nucl. Tech. Fusion 4, 8 (1983); W. W. Simmons et al., in Proceedings of the Ninth Symposium on Engineering Problems of Fusion Research (Institute of Electrical and Electronics Engineers, New York, 1981), p. 1221.
  4. K. S. Jammu, C. E. St. John, H. L. Welsh, Can. J. Phys. 44, 797 (1966).
    [Crossref]
  5. R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, Phys. Rev. A 2, 60 (1970).
    [Crossref]
  6. A. Laubereau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).
    [Crossref]
  7. W. Kaiser, M. Maier, Laser Handbook, F. T. Arrechi, E. O. Schulz-Dubois, eds. (North Holland, Amsterdam, 1972), Vol. 2, Chap. E2.
  8. See A. Yariv, Quantum Electronics (Wiley, New York, 1967), Chap. 24, App. 5.
  9. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965), Sec. 4–6.
  10. B. N. Perry, P. Rabinowitz, D. S. Bomse, Opt. Lett. 10, 146 (1985).
    [Crossref] [PubMed]

1985 (1)

1983 (1)

W. W. Simmons, R. O. Godwin, J. Nucl. Tech. Fusion 4, 8 (1983); W. W. Simmons et al., in Proceedings of the Ninth Symposium on Engineering Problems of Fusion Research (Institute of Electrical and Electronics Engineers, New York, 1981), p. 1221.

1978 (2)

V. S. Averbakh, A. I. Makarov, V. I. Talanov, Sov. J. Quantum Electron. 8, 472 (1978).
[Crossref]

A. Laubereau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).
[Crossref]

1970 (1)

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, Phys. Rev. A 2, 60 (1970).
[Crossref]

1966 (1)

K. S. Jammu, C. E. St. John, H. L. Welsh, Can. J. Phys. 44, 797 (1966).
[Crossref]

Averbakh, V. S.

V. S. Averbakh, A. I. Makarov, V. I. Talanov, Sov. J. Quantum Electron. 8, 472 (1978).
[Crossref]

Bischel, W. K.

G. C. Herring, M. J. Dyer, W. K. Bischel, Opt. Lett. (to be published); J. Jacob, Science Research Corporation, Somerville, Mass., and N. A. Kurnit, Los Alamos National Laboratory (personal communications).

Bloembergen, N.

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, Phys. Rev. A 2, 60 (1970).
[Crossref]

N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965), Sec. 4–6.

Bomse, D. S.

Carman, R. L.

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, Phys. Rev. A 2, 60 (1970).
[Crossref]

Dyer, M. J.

G. C. Herring, M. J. Dyer, W. K. Bischel, Opt. Lett. (to be published); J. Jacob, Science Research Corporation, Somerville, Mass., and N. A. Kurnit, Los Alamos National Laboratory (personal communications).

Godwin, R. O.

W. W. Simmons, R. O. Godwin, J. Nucl. Tech. Fusion 4, 8 (1983); W. W. Simmons et al., in Proceedings of the Ninth Symposium on Engineering Problems of Fusion Research (Institute of Electrical and Electronics Engineers, New York, 1981), p. 1221.

Herring, G. C.

G. C. Herring, M. J. Dyer, W. K. Bischel, Opt. Lett. (to be published); J. Jacob, Science Research Corporation, Somerville, Mass., and N. A. Kurnit, Los Alamos National Laboratory (personal communications).

Jammu, K. S.

K. S. Jammu, C. E. St. John, H. L. Welsh, Can. J. Phys. 44, 797 (1966).
[Crossref]

John, C. E. St.

K. S. Jammu, C. E. St. John, H. L. Welsh, Can. J. Phys. 44, 797 (1966).
[Crossref]

Kaiser, W.

A. Laubereau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).
[Crossref]

W. Kaiser, M. Maier, Laser Handbook, F. T. Arrechi, E. O. Schulz-Dubois, eds. (North Holland, Amsterdam, 1972), Vol. 2, Chap. E2.

Laubereau, A.

A. Laubereau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).
[Crossref]

Maier, M.

W. Kaiser, M. Maier, Laser Handbook, F. T. Arrechi, E. O. Schulz-Dubois, eds. (North Holland, Amsterdam, 1972), Vol. 2, Chap. E2.

Makarov, A. I.

V. S. Averbakh, A. I. Makarov, V. I. Talanov, Sov. J. Quantum Electron. 8, 472 (1978).
[Crossref]

Perry, B. N.

Rabinowitz, P.

Shimizu, F.

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, Phys. Rev. A 2, 60 (1970).
[Crossref]

Simmons, W. W.

W. W. Simmons, R. O. Godwin, J. Nucl. Tech. Fusion 4, 8 (1983); W. W. Simmons et al., in Proceedings of the Ninth Symposium on Engineering Problems of Fusion Research (Institute of Electrical and Electronics Engineers, New York, 1981), p. 1221.

Talanov, V. I.

V. S. Averbakh, A. I. Makarov, V. I. Talanov, Sov. J. Quantum Electron. 8, 472 (1978).
[Crossref]

Wang, C. S.

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, Phys. Rev. A 2, 60 (1970).
[Crossref]

Welsh, H. L.

K. S. Jammu, C. E. St. John, H. L. Welsh, Can. J. Phys. 44, 797 (1966).
[Crossref]

Yariv, A.

See A. Yariv, Quantum Electronics (Wiley, New York, 1967), Chap. 24, App. 5.

Can. J. Phys. (1)

K. S. Jammu, C. E. St. John, H. L. Welsh, Can. J. Phys. 44, 797 (1966).
[Crossref]

J. Nucl. Tech. Fusion (1)

W. W. Simmons, R. O. Godwin, J. Nucl. Tech. Fusion 4, 8 (1983); W. W. Simmons et al., in Proceedings of the Ninth Symposium on Engineering Problems of Fusion Research (Institute of Electrical and Electronics Engineers, New York, 1981), p. 1221.

Opt. Lett. (1)

Phys. Rev. A (1)

R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, Phys. Rev. A 2, 60 (1970).
[Crossref]

Rev. Mod. Phys. (1)

A. Laubereau, W. Kaiser, Rev. Mod. Phys. 50, 607 (1978).
[Crossref]

Sov. J. Quantum Electron. (1)

V. S. Averbakh, A. I. Makarov, V. I. Talanov, Sov. J. Quantum Electron. 8, 472 (1978).
[Crossref]

Other (4)

G. C. Herring, M. J. Dyer, W. K. Bischel, Opt. Lett. (to be published); J. Jacob, Science Research Corporation, Somerville, Mass., and N. A. Kurnit, Los Alamos National Laboratory (personal communications).

W. Kaiser, M. Maier, Laser Handbook, F. T. Arrechi, E. O. Schulz-Dubois, eds. (North Holland, Amsterdam, 1972), Vol. 2, Chap. E2.

See A. Yariv, Quantum Electronics (Wiley, New York, 1967), Chap. 24, App. 5.

N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965), Sec. 4–6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Stimulated Raman Stokes and anti-Stokes orders observed for laser shots characterized by the product of average intensity and propagation distance in terawatts per centimeter.

Fig. 2
Fig. 2

Spectrum of rotational stimulated Raman scattering from nitrogen in a 150-m air path at an intensity–path-length product of 30 TW/cm for a 1-nsec laser pulse.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I s ( ν ) = I p N L d σ Ω f ( ν ) d ν d Ω ,
G ( ν ) = γ ( ν ) I p L = λ s 2 N h ν s σ Ω f ( ν ) I p L ,
I s ( ν 0 ) = γ ( ν 0 ) I p L ( h ν s / λ s 2 ) d ν d Ω .
G = ln F + ln ν s ν p + ln 5 λ s 2 I p h ν s d Ω Δ ν .

Metrics