Abstract

Gaussian modes with large sections have been experimentally produced in Cassegrain resonators using Gaussian reflectivity convex couplers. The far field of the beam, which was coupled through a Gaussian coupler, was found to be free from secondary rings.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zucker, Bell Syst. Tech. J. 49, 2349 (1970).
  2. A. Yariv, P. Yeh, Opt. Commun. 13, 370 (1975).
    [Crossref]
  3. G. Giuliani, Y. K. Park, R. L. Byer, Opt. Lett. 5, 491 (1980).
    [Crossref] [PubMed]
  4. P. Lavigne, N. McCarthy, J. G. Demers, Appl. Opt. 24, 2581 (1985).
    [Crossref] [PubMed]
  5. N. McCarthy, P. Lavigne, Appl. Opt. 23, 3845 (1984).
    [Crossref] [PubMed]
  6. N. McCarthy, P. Lavigne, Appl. Opt. 22, 2704 (1983).
    [Crossref] [PubMed]
  7. A. N. Chester, IEEE J. Quantum Electron. QE-9, 209 (1973).
    [Crossref]

1985 (1)

1984 (1)

1983 (1)

1980 (1)

1975 (1)

A. Yariv, P. Yeh, Opt. Commun. 13, 370 (1975).
[Crossref]

1973 (1)

A. N. Chester, IEEE J. Quantum Electron. QE-9, 209 (1973).
[Crossref]

1970 (1)

H. Zucker, Bell Syst. Tech. J. 49, 2349 (1970).

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

H. Zucker, Bell Syst. Tech. J. 49, 2349 (1970).

IEEE J. Quantum Electron. (1)

A. N. Chester, IEEE J. Quantum Electron. QE-9, 209 (1973).
[Crossref]

Opt. Commun. (1)

A. Yariv, P. Yeh, Opt. Commun. 13, 370 (1975).
[Crossref]

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

(A) Intracavity and (B) near-field intensity distributions of the beam produced in a Cassegrain resonator (M = 2) with a GRC (wm = 1.2 cm, R0 = 0.7).

Fig. 3
Fig. 3

Far-field intensity distribution of the beam coupled out of a Cassegrain cavity (M = 2); (A) through a 12.5-cm-diameter GRC (2wm = 2.4 cm) and (B) around a 2.5-cm-diameter hard-edged mirror.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

w b = ( M 2 - 1 ) 1 / 2 w m ,
I nf ( ρ ) = I nf ( 0 ) exp { - ρ 2 w b 2 } [ 1 - R 0 exp { - ρ 2 w m 2 } ] ,
I f f ( θ ) = I f f ( 0 ) [ exp { - θ 2 θ 0 2 } - R 0 2 ( 1 + 2 w b 2 / w m 2 ) exp { - θ 2 ( 1 + 2 w b 2 / w m 2 ) θ 0 2 } ] 2 ,

Metrics