Abstract

We show that the optical phase-conjugated reflectivity from silver and gold colloids is enhanced by several orders of magnitude. The reflectivity on resonance is comparable with that of CS2 for metal-particle volume concentration of a few parts in 106. We trace this enhancement to the nonlinearities of the electrons in the metal particles and extract the value of their optical Kerr-effect coefficient.

© 1985 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects

F. Hache, D. Ricard, and C. Flytzanis
J. Opt. Soc. Am. B 3(12) 1647-1655 (1986)

Composite structures for the enhancement of nonlinear-optical susceptibility

A. E. Neeves and M. H. Birnboim
J. Opt. Soc. Am. B 6(4) 787-796 (1989)

Composite structures for the enhancement of nonlinear optical materials

A. E. Neeves and Meyer H. Birnboim
Opt. Lett. 13(12) 1087-1089 (1988)

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).
  2. For a review on composite materials see J. A. A. J. Perenboom, P. Wyder, and F. Meier, Phys. Rep. 78, 173 (1981).
    [Crossref]
  3. See, for instance, Surface Enhanced Raman Scattering, R. K. Chang and T. E. Furtak, eds. (Plenum, New York, 1982).
    [Crossref]
  4. See, for instance, C. J. Böttcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1973), p. 78.
  5. J. C. Maxwell-Garnett, Philos. Trans. R. Soc. London 203, 385 (1904); Philos. Trans. R. Soc. London 205, 237 (1906).
    [Crossref]
  6. R. Landauer, AIP Conf. Proc. 40, 2 (1978).
    [Crossref]
  7. D. K. Hale, J. Mater. Sci. 11, 2105 (1976).
    [Crossref]
  8. L. Genzel, T. P. Martin, and O. Kreibig, Z. Phys. B21, 3391 (1975).
  9. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 127, 1918 (1962); see app.
    [Crossref]
  10. R. A. Fisher, ed., Optical Phase Conjugation (Academic, New York, 1983).
  11. P. B. Johnson and R. N. Christy, Phys. Rev. B 6, 4370 (1972).
    [Crossref]
  12. R. H. Doremus, J. Chem. Phys. 42, 414 (1965).
    [Crossref]
  13. R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
    [Crossref]
  14. J. W. Lewis and W. H. Orttung, J. Phys. Chem. 82, 698 (1978).
    [Crossref]
  15. W. K. Burns and N. Bloembergen, Phys. Rev. B 4, 3437 (1971).
    [Crossref]
  16. K. C. Rustagi and C. Flytzanis, Opt. Lett. 9, 344 (1984).
    [Crossref] [PubMed]

1984 (1)

1981 (1)

For a review on composite materials see J. A. A. J. Perenboom, P. Wyder, and F. Meier, Phys. Rep. 78, 173 (1981).
[Crossref]

1978 (2)

R. Landauer, AIP Conf. Proc. 40, 2 (1978).
[Crossref]

J. W. Lewis and W. H. Orttung, J. Phys. Chem. 82, 698 (1978).
[Crossref]

1977 (1)

R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[Crossref]

1976 (1)

D. K. Hale, J. Mater. Sci. 11, 2105 (1976).
[Crossref]

1975 (1)

L. Genzel, T. P. Martin, and O. Kreibig, Z. Phys. B21, 3391 (1975).

1972 (1)

P. B. Johnson and R. N. Christy, Phys. Rev. B 6, 4370 (1972).
[Crossref]

1971 (1)

W. K. Burns and N. Bloembergen, Phys. Rev. B 4, 3437 (1971).
[Crossref]

1965 (1)

R. H. Doremus, J. Chem. Phys. 42, 414 (1965).
[Crossref]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 127, 1918 (1962); see app.
[Crossref]

1908 (1)

G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).

1904 (1)

J. C. Maxwell-Garnett, Philos. Trans. R. Soc. London 203, 385 (1904); Philos. Trans. R. Soc. London 205, 237 (1906).
[Crossref]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 127, 1918 (1962); see app.
[Crossref]

Bloembergen, N.

W. K. Burns and N. Bloembergen, Phys. Rev. B 4, 3437 (1971).
[Crossref]

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 127, 1918 (1962); see app.
[Crossref]

Böttcher, C. J.

See, for instance, C. J. Böttcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1973), p. 78.

Burns, W. K.

W. K. Burns and N. Bloembergen, Phys. Rev. B 4, 3437 (1971).
[Crossref]

Christy, R. N.

P. B. Johnson and R. N. Christy, Phys. Rev. B 6, 4370 (1972).
[Crossref]

Doremus, R. H.

R. H. Doremus, J. Chem. Phys. 42, 414 (1965).
[Crossref]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 127, 1918 (1962); see app.
[Crossref]

Flytzanis, C.

Genzel, L.

L. Genzel, T. P. Martin, and O. Kreibig, Z. Phys. B21, 3391 (1975).

Hale, D. K.

D. K. Hale, J. Mater. Sci. 11, 2105 (1976).
[Crossref]

Hellwarth, R. W.

R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. N. Christy, Phys. Rev. B 6, 4370 (1972).
[Crossref]

Kreibig, O.

L. Genzel, T. P. Martin, and O. Kreibig, Z. Phys. B21, 3391 (1975).

Landauer, R.

R. Landauer, AIP Conf. Proc. 40, 2 (1978).
[Crossref]

Lewis, J. W.

J. W. Lewis and W. H. Orttung, J. Phys. Chem. 82, 698 (1978).
[Crossref]

Martin, T. P.

L. Genzel, T. P. Martin, and O. Kreibig, Z. Phys. B21, 3391 (1975).

Maxwell-Garnett, J. C.

J. C. Maxwell-Garnett, Philos. Trans. R. Soc. London 203, 385 (1904); Philos. Trans. R. Soc. London 205, 237 (1906).
[Crossref]

Meier, F.

For a review on composite materials see J. A. A. J. Perenboom, P. Wyder, and F. Meier, Phys. Rep. 78, 173 (1981).
[Crossref]

Mie, G.

G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).

Orttung, W. H.

J. W. Lewis and W. H. Orttung, J. Phys. Chem. 82, 698 (1978).
[Crossref]

Perenboom, J. A. A. J.

For a review on composite materials see J. A. A. J. Perenboom, P. Wyder, and F. Meier, Phys. Rep. 78, 173 (1981).
[Crossref]

Pershan, P.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 127, 1918 (1962); see app.
[Crossref]

Rustagi, K. C.

Wyder, P.

For a review on composite materials see J. A. A. J. Perenboom, P. Wyder, and F. Meier, Phys. Rep. 78, 173 (1981).
[Crossref]

AIP Conf. Proc. (1)

R. Landauer, AIP Conf. Proc. 40, 2 (1978).
[Crossref]

Ann. Phys. (Leipzig) (1)

G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908).

J. Chem. Phys. (1)

R. H. Doremus, J. Chem. Phys. 42, 414 (1965).
[Crossref]

J. Mater. Sci. (1)

D. K. Hale, J. Mater. Sci. 11, 2105 (1976).
[Crossref]

J. Phys. Chem. (1)

J. W. Lewis and W. H. Orttung, J. Phys. Chem. 82, 698 (1978).
[Crossref]

Opt. Lett. (1)

Philos. Trans. R. Soc. London (1)

J. C. Maxwell-Garnett, Philos. Trans. R. Soc. London 203, 385 (1904); Philos. Trans. R. Soc. London 205, 237 (1906).
[Crossref]

Phys. Rep. (1)

For a review on composite materials see J. A. A. J. Perenboom, P. Wyder, and F. Meier, Phys. Rep. 78, 173 (1981).
[Crossref]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, Phys. Rev. 127, 1918 (1962); see app.
[Crossref]

Phys. Rev. B (2)

P. B. Johnson and R. N. Christy, Phys. Rev. B 6, 4370 (1972).
[Crossref]

W. K. Burns and N. Bloembergen, Phys. Rev. B 4, 3437 (1971).
[Crossref]

Prog. Quantum Electron. (1)

R. W. Hellwarth, Prog. Quantum Electron. 5, 1 (1977).
[Crossref]

Z. Phys. (1)

L. Genzel, T. P. Martin, and O. Kreibig, Z. Phys. B21, 3391 (1975).

Other (3)

R. A. Fisher, ed., Optical Phase Conjugation (Academic, New York, 1983).

See, for instance, Surface Enhanced Raman Scattering, R. K. Chang and T. E. Furtak, eds. (Plenum, New York, 1982).
[Crossref]

See, for instance, C. J. Böttcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1973), p. 78.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Normalized conjugated signal as a function of the forward or backward pump-pulse delay. Notice that it peaks at zero delay.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

m ( ω s ) + 2 d ( ω s ) = 0 ,
˜ - d ˜ + 2 d = p m - d m + 2 d .
˜ = d + 3 p d m - d m + 2 d ,
α = 9 p ω c d 3 / 2 m ( m + 2 d ) 2 + m 2 .
δ ˜ = f 2 p δ m ,
f 2 = ( 3 d m + 2 d ) 2 .
δ m = 12 π χ m ( 3 ) E 1 2 ,
E 1 = 3 d m + 2 d E o = f 1 E o .
δ ˜ = 12 π p f 1 4 χ m ( 3 ) E o 2 .
P NLS ( 3 ) = 3 p f 1 4 χ m ( 3 ) E o 3 ,
χ ( 3 ) ( ω , - ω , ω ) = 1.5 × 10 - 8 esu             for gold spheres at 0.53 μ m , χ ( 3 ) ( ω , - ω , ω ) = 2.4 × 10 - 9 esu             for silver spheres at 0.40 μ m .

Metrics