Abstract

Rainbow holography without the use of a slit has been demonstrated by combining Abramson’s light-in-flight approach [Opt. Lett. 3, 121 (1978)] with Benton’s rainbow technique [J. Opt. Soc. Am. 59, 1545 (A) 1969]. The system has a natural slit-shaped pupil whose extent and position are determined by the experimental parameters.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Benton, J. Opt. Soc. Amn. 59, 1545 (A) (1969).
  2. C. P. Grover, H. M. Van Driel, J. Opt. Soc. Am. 70, 335 (1980).
    [CrossRef]
  3. C. P. Grover, R. A. Lessard, R. Tremblay, Appl. Opt. 22, 3300 (1983).
    [CrossRef] [PubMed]
  4. Q. Shan, Q. Chen, H. Chen, Appl. Opt. 22, 3902 (1983).
    [CrossRef] [PubMed]
  5. A. Beauregard, R. A. Lessard, Appl. Opt. 23, 3096 (1984).
    [CrossRef]
  6. N. Abramson, Appl. Opt. 11, 2562 (1972).
    [CrossRef] [PubMed]
  7. N. Abramson, Opt. Lett. 3, 121 (1978).
    [CrossRef] [PubMed]
  8. N. Abramson, Appl. Opt. 22, 215 (1983).
    [CrossRef] [PubMed]
  9. N. Abramson, Appl. Opt. 23, 1481 (1984).
    [CrossRef] [PubMed]
  10. N. Abramson, Appl. Opt. 23, 4007 (1984).
    [CrossRef] [PubMed]
  11. F. Quercioli, G. Molesini, “White light-in-flight holography,” Appl. Opt. (to be published).
  12. G. Molesini, F. Quercioli, Appl. Opt. 24, 927 (1985).
    [CrossRef] [PubMed]

1985 (1)

1984 (3)

1983 (3)

1980 (1)

1978 (1)

1972 (1)

1969 (1)

S. A. Benton, J. Opt. Soc. Amn. 59, 1545 (A) (1969).

Abramson, N.

Beauregard, A.

A. Beauregard, R. A. Lessard, Appl. Opt. 23, 3096 (1984).
[CrossRef]

Benton, S. A.

S. A. Benton, J. Opt. Soc. Amn. 59, 1545 (A) (1969).

Chen, H.

Chen, Q.

Grover, C. P.

Lessard, R. A.

Molesini, G.

G. Molesini, F. Quercioli, Appl. Opt. 24, 927 (1985).
[CrossRef] [PubMed]

F. Quercioli, G. Molesini, “White light-in-flight holography,” Appl. Opt. (to be published).

Quercioli, F.

G. Molesini, F. Quercioli, Appl. Opt. 24, 927 (1985).
[CrossRef] [PubMed]

F. Quercioli, G. Molesini, “White light-in-flight holography,” Appl. Opt. (to be published).

Shan, Q.

Tremblay, R.

Van Driel, H. M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the recording procedure. (a) Step 1. Object beam and reference beam RB1 are recorded at holographic plate H1. (b) Step 2. Hologram H1 is illuminated by RB1* (propagation vector k1) at an angle α. This produces an object beam OB2, which forms a real image at plate H2, where reference beam RB2 (propagation vector k2) impinges at an angle β. The plates are set parallel to each other at a distance d, so that central point O2 is the focus of the zero-OPD paraboloid through central point O1. Similarly, point P2 is the focus of the paraboloid through P1.

Fig. 2
Fig. 2

Viewing of hologram H2 by means of monochromatic beam RB2*. A real image of H1 is formed a distance d apart, so that light diffracted at P2 focuses at P1 and crosses the optical axis at F, where the synthetic slit is formed.

Fig. 3
Fig. 3

Photograph of the orthoscopic image produced by white-light illumination.

Fig. 4
Fig. 4

Focusing of the light at the synthetic slit. Monochromatic beam RB2* illuminates H2, and the diffracted light focuses on a screen.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

y 1 cos α + [ d 2 + ( y 2 - y 1 ) 2 ] 1 / 2 = d + y 2 cos β ,
y 1 cos α = y 2 cos β .
x F = d 1 - cos α cos β ,             y F = 0.
y 1 cos α + [ d 2 + ( y 2 - y 1 ) 2 ] - d - y 2 cos β < δ ,
y 1 cos α - y 2 cos β < δ ,
y F < δ / cos β - cos α .
Δ = 2 δ cos β - cos α = x F cos β .

Metrics