Abstract

It is shown that diffraction-limited imaging systems with symmetric pupils and a noncentral obscuration yield a higher concentration of energy near the center of an image of a point object than those with central obscuration.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975), p. 416.
  2. G. W. Sutton, N. M. Weiner, S. A. Mani, Appl. Opt. 15, 2228 (1976).
    [CrossRef] [PubMed]
  3. M. Born, E. Wolf, op. cit., p. 482.
  4. Ibid., p. 485.

1976

Born, M.

M. Born, E. Wolf, op. cit., p. 482.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975), p. 416.

Mani, S. A.

Sutton, G. W.

Weiner, N. M.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975), p. 416.

M. Born, E. Wolf, op. cit., p. 482.

Appl. Opt.

Other

M. Born, E. Wolf, Principles of Optics, 5th ed. (Pergamon, New York, 1975), p. 416.

M. Born, E. Wolf, op. cit., p. 482.

Ibid., p. 485.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P s ( x , y ; 1 , 2 ; x 0 , y 0 ) = A ( x , y ) A ( x x 0 1 , y y 0 2 ) .
U s ( x , y ; 1 , 2 ; x 0 , y 0 ) = U ( x , y ) 1 2 × exp [ 2 π i λ R ( x x 0 + y y 0 ) ] U ( 1 x , 2 y ) .
I s ( x , y ; 1 , 2 ; x 0 , y 0 ) = | U s ( x , y ; 1 , 2 ; x 0 , y 0 ) | 2 = U 2 ( x , y ) + 1 2 2 2 U 2 ( 1 x , 2 y ) 2 1 2 U ( x , y ) U ( 1 x , 2 y ) cos [ 2 π λ R ( x x 0 + y y 0 ) ] .
Δ I ( x , y ; 1 , 2 ; x 0 , y 0 ) = I s ( x , y ; 1 , 2 ; x 0 , y 0 ) I s ( x , y ; 1 , 2 ; x 0 = y 0 = 0 ) = 2 1 2 U ( x , y ) U ( 1 x , 2 y ) { 1 cos [ 2 π λ R ( x x 0 + y y 0 ) ] } .
Δ E ( 1 , 2 ; x 0 , y 0 ) = det Δ I ( x , y ; 1 2 ; x 0 , y 0 ) d x d y ,
τ s ( ξ , η ; 1 , 2 , x 0 = y 0 = 0 ) = τ ( ξ , η ) + 1 2 τ ( ξ / 1 , η / 2 ) τ 12 ( ξ , η ; 1 , 2 ) ,
τ s ( ξ , η ; 1 , 2 , x 0 , y 0 ) = τ ( ξ , η ) + 1 2 τ ( ξ / 1 , η / 2 ) 1 2 [ τ 12 ( ξ + ξ 0 , η + η 0 ; 1 , 2 ) + τ 12 ( ξ ξ 0 , η η 0 ; 1 , 2 ) ] ,
Δ τ ( ξ , η ; 1 , 2 ; x 0 , y 0 ) = τ s ( ξ , η ; 1 , 2 ; x 0 , y 0 ) τ s ( ξ , η ; 1 , 2 , x 0 = y 0 = 0 ) = τ 12 ( ξ , η , 1 , 2 ) 1 2 [ τ 12 ( ξ + ξ 0 , η + η 0 , 1 , 2 ) + τ 12 ( ξ ξ 0 , η η 0 , 1 , 2 ) ] .

Metrics