Abstract

A highly versatile polarimeter has been constructed for determining all the Stokes parameters for a beam of radiation. Polarization measurements are performed using digital lock-in techniques by replacing the linear retardation plate with an electro-optic crystal, which can be externally modulated. The device lends itself readily to laboratory applications and provides the possibility of measuring small polarization quite accurately.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Jonah, R. N. Zare, Ch. Ottinger, J. Chem. Phys. 56, 263 (1972).
    [CrossRef]
  2. D. E. Aspnes, P. S. Hauge, J. Opt. Soc. Am. 66, 949 (1976).
    [CrossRef]
  3. C. D. Caldwell, thesis (Columbia U., New York, 1976).
  4. J. R. P. Angel, J. D. Landstreet, Astrophys. Lett. 160, 147 (1970).
    [CrossRef]
  5. H. W. Babcock, Astrophys. J. 118, 387 (1953).
    [CrossRef]
  6. R. M. Illing, thesis (Columbia U., New York, 1973).
  7. B. H. Billings, J. Opt. Soc. Am. 39, 797 (1949).
    [CrossRef]
  8. W. A. Shurcliff, Polarized Light (Harvard U. Press, Cambridge, Mass., 1962).
  9. M. P. Sinha, C. D. Caldwell, R. N. Zare, J. Chem. Phys. 61, 491 (1974).
    [CrossRef]

1976

1974

M. P. Sinha, C. D. Caldwell, R. N. Zare, J. Chem. Phys. 61, 491 (1974).
[CrossRef]

1972

C. D. Jonah, R. N. Zare, Ch. Ottinger, J. Chem. Phys. 56, 263 (1972).
[CrossRef]

1970

J. R. P. Angel, J. D. Landstreet, Astrophys. Lett. 160, 147 (1970).
[CrossRef]

1953

H. W. Babcock, Astrophys. J. 118, 387 (1953).
[CrossRef]

1949

Angel, J. R. P.

J. R. P. Angel, J. D. Landstreet, Astrophys. Lett. 160, 147 (1970).
[CrossRef]

Aspnes, D. E.

Babcock, H. W.

H. W. Babcock, Astrophys. J. 118, 387 (1953).
[CrossRef]

Billings, B. H.

Caldwell, C. D.

M. P. Sinha, C. D. Caldwell, R. N. Zare, J. Chem. Phys. 61, 491 (1974).
[CrossRef]

C. D. Caldwell, thesis (Columbia U., New York, 1976).

Hauge, P. S.

Illing, R. M.

R. M. Illing, thesis (Columbia U., New York, 1973).

Jonah, C. D.

C. D. Jonah, R. N. Zare, Ch. Ottinger, J. Chem. Phys. 56, 263 (1972).
[CrossRef]

Landstreet, J. D.

J. R. P. Angel, J. D. Landstreet, Astrophys. Lett. 160, 147 (1970).
[CrossRef]

Ottinger, Ch.

C. D. Jonah, R. N. Zare, Ch. Ottinger, J. Chem. Phys. 56, 263 (1972).
[CrossRef]

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light (Harvard U. Press, Cambridge, Mass., 1962).

Sinha, M. P.

M. P. Sinha, C. D. Caldwell, R. N. Zare, J. Chem. Phys. 61, 491 (1974).
[CrossRef]

Zare, R. N.

M. P. Sinha, C. D. Caldwell, R. N. Zare, J. Chem. Phys. 61, 491 (1974).
[CrossRef]

C. D. Jonah, R. N. Zare, Ch. Ottinger, J. Chem. Phys. 56, 263 (1972).
[CrossRef]

Astrophys. J.

H. W. Babcock, Astrophys. J. 118, 387 (1953).
[CrossRef]

Astrophys. Lett.

J. R. P. Angel, J. D. Landstreet, Astrophys. Lett. 160, 147 (1970).
[CrossRef]

J. Chem. Phys.

M. P. Sinha, C. D. Caldwell, R. N. Zare, J. Chem. Phys. 61, 491 (1974).
[CrossRef]

C. D. Jonah, R. N. Zare, Ch. Ottinger, J. Chem. Phys. 56, 263 (1972).
[CrossRef]

J. Opt. Soc. Am.

Other

W. A. Shurcliff, Polarized Light (Harvard U. Press, Cambridge, Mass., 1962).

C. D. Caldwell, thesis (Columbia U., New York, 1976).

R. M. Illing, thesis (Columbia U., New York, 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Optical train of the polarization analyzer. The angle θ, which the principal axes of both the quarter-wave plate and the electro-optic crystal make with the azimuth, is 45°.

Fig. 2
Fig. 2

Outline of logic for the polarization analyzer. The high-voltage switching signal selects one direction of the retardance of the electro-optic crystal (+ or − δ) by choosing the direction of the applied voltage across the crystal. For a given retardance, the logic unit simultaneously opens the gate to the counter that is to receive the signal corresponding to that polarization [see Eq. (1)].

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

M ( ± δ , 0 ° ) S = 1 2 [ I + Q cos ( Δ ± δ ) V sin ( Δ ± δ ) ] { 1 1 0 0 } ,
P = ( Q 2 + U ˙ 2 + V 2 ) 1 / 2 / I ,
P = I ( δ ) I ( + δ ) I ( δ ) + I ( + δ ) ,
P = Q sin Δ sin δ I + Q cos Δ cos δ
M ( ± δ , 90 ° ) S = 1 2 [ I Q cos ( Δ ± δ ) V sin ( Δ ± δ ) ] { 1 1 0 0 } .
Q / I sin Δ sin δ = M ( + δ , 90 ° ) S M ( δ , 90 ° ) S M ( + δ , 0 ° ) S + M ( δ , 0 ° ) S M ( + δ , 90 ° ) S + M ( δ , 90 ° ) S + M ( + δ , 0 ° ) S + M ( δ , 0 ° ) S .
U / I sin Δ sin δ = M ( δ , 45 ° ) S M ( + δ , 45 ° ) S M ( δ , 45 ° ) S + M ( + δ , 45 ° ) S M ( δ , 45 ° ) S + M ( + δ , 45 ° ) S + M ( δ , 45 ° ) S + M ( + δ , 45 ° ) S ,
V / I sin δ = M ( δ , 0 ° ) S M ( + δ , 0 ° ) S + M ( δ , 90 o ) S M ( + δ , 90 ° ) S M ( δ , 0 ° ) S + M ( + δ , 0 ° ) S + M ( δ , 90 o ) S + M ( + δ , 90 ° ) S .
Q / I sin Δ sin δ = ( a + b ) ( S + S S + + S ) ( a b ) ( S + + S + S + + S ) ,

Metrics