Abstract

Experiments are described illustrating enhanced photon trapping and efficient energy transfer in mixed-dye planar solar concentrators containing, for example, Rhodamine 6G and Coumarin 6. These concentrators intercept more of the solar spectrum to give an enhanced photon-flux gain that exceeds the single-dye concentrator. It is also shown that the energy absorbed by the donor dye is transferred efficiently into the emitting acceptor by two competing processes.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Weber, J. Lambe, Appl. Opt. 15, 2299, (1976).
    [CrossRef] [PubMed]
  2. A scheme similar to the PSC was earlier proposed for collecting light in scintillation counters. See W. A. Shurcliff, J. Opt. Soc. Am. 41, 209 (1951); R. L. Garwin, Rev. Sci. Instrum. 31, 1010 (1960); G. Keil, J. Appl. Phys. 40, 3544 (1969).
    [CrossRef]
  3. J. E. Levitt, W. H. Weber, Appl. Opt. (to be published).
  4. F. P. Schafer, ed., Dye Lasers (Springer-Verlag, New York, 1973).
    [CrossRef]
  5. See, for example, C. E. Moeller, C. M. Verber, A. H. Adelman, Appl. Phys. Lett. 18, 278 (1971); S. A. Ahmed, J. S. Gergely, D. Infante, J. Chem. Phys. 61, 1584 (1974); T. Unisu, K. Kajiyanea, J. Appl. Phys. 47, 3573 (1976).
    [CrossRef]
  6. The measurement of the current is consistent with the reported ratio when the PSCm and PSCs were exposed to sunlight. These preliminary results were corrected for scattered light by using a plastic that does not have any dye but possesses the same dimensions as the PSC under investigation.
  7. Th. Förster, Discus. Faraday Soc. 27, 7 (1959).
    [CrossRef]
  8. J. Jortner has brought our attention to the work done on anthracene crystals.9,10 Thick crystals give a lifetime of 16 nsec at room temperature and 8 nsec at 70 K. Because thin anthracene crystals will not absorb one photon uniformally, two-photon excitation10 of crystals of variable thickness gave different lifetimes, 27 nsec for 1-cm-thick and 12 nsec for 1-μm-thick crystals. These results were interpreted in terms of radiation trapping by the (thermally populated) hot vibrational bands.
  9. L. M. Logan, I. H. Munro, D. F. Williams, F. R. Lipsettin Molecular Luminescence, E. Lim, ed. (Benjamin, New York, 1969), p. 773.
  10. J. Burak, J. Jortner (unpublished results).

1976 (1)

1971 (1)

See, for example, C. E. Moeller, C. M. Verber, A. H. Adelman, Appl. Phys. Lett. 18, 278 (1971); S. A. Ahmed, J. S. Gergely, D. Infante, J. Chem. Phys. 61, 1584 (1974); T. Unisu, K. Kajiyanea, J. Appl. Phys. 47, 3573 (1976).
[CrossRef]

1959 (1)

Th. Förster, Discus. Faraday Soc. 27, 7 (1959).
[CrossRef]

1951 (1)

Adelman, A. H.

See, for example, C. E. Moeller, C. M. Verber, A. H. Adelman, Appl. Phys. Lett. 18, 278 (1971); S. A. Ahmed, J. S. Gergely, D. Infante, J. Chem. Phys. 61, 1584 (1974); T. Unisu, K. Kajiyanea, J. Appl. Phys. 47, 3573 (1976).
[CrossRef]

Burak, J.

J. Burak, J. Jortner (unpublished results).

Förster, Th.

Th. Förster, Discus. Faraday Soc. 27, 7 (1959).
[CrossRef]

Jortner, J.

J. Burak, J. Jortner (unpublished results).

Lambe, J.

Levitt, J. E.

J. E. Levitt, W. H. Weber, Appl. Opt. (to be published).

Lipsett, F. R.

L. M. Logan, I. H. Munro, D. F. Williams, F. R. Lipsettin Molecular Luminescence, E. Lim, ed. (Benjamin, New York, 1969), p. 773.

Logan, L. M.

L. M. Logan, I. H. Munro, D. F. Williams, F. R. Lipsettin Molecular Luminescence, E. Lim, ed. (Benjamin, New York, 1969), p. 773.

Moeller, C. E.

See, for example, C. E. Moeller, C. M. Verber, A. H. Adelman, Appl. Phys. Lett. 18, 278 (1971); S. A. Ahmed, J. S. Gergely, D. Infante, J. Chem. Phys. 61, 1584 (1974); T. Unisu, K. Kajiyanea, J. Appl. Phys. 47, 3573 (1976).
[CrossRef]

Munro, I. H.

L. M. Logan, I. H. Munro, D. F. Williams, F. R. Lipsettin Molecular Luminescence, E. Lim, ed. (Benjamin, New York, 1969), p. 773.

Shurcliff, W. A.

Verber, C. M.

See, for example, C. E. Moeller, C. M. Verber, A. H. Adelman, Appl. Phys. Lett. 18, 278 (1971); S. A. Ahmed, J. S. Gergely, D. Infante, J. Chem. Phys. 61, 1584 (1974); T. Unisu, K. Kajiyanea, J. Appl. Phys. 47, 3573 (1976).
[CrossRef]

Weber, W. H.

W. H. Weber, J. Lambe, Appl. Opt. 15, 2299, (1976).
[CrossRef] [PubMed]

J. E. Levitt, W. H. Weber, Appl. Opt. (to be published).

Williams, D. F.

L. M. Logan, I. H. Munro, D. F. Williams, F. R. Lipsettin Molecular Luminescence, E. Lim, ed. (Benjamin, New York, 1969), p. 773.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

See, for example, C. E. Moeller, C. M. Verber, A. H. Adelman, Appl. Phys. Lett. 18, 278 (1971); S. A. Ahmed, J. S. Gergely, D. Infante, J. Chem. Phys. 61, 1584 (1974); T. Unisu, K. Kajiyanea, J. Appl. Phys. 47, 3573 (1976).
[CrossRef]

Discus. Faraday Soc. (1)

Th. Förster, Discus. Faraday Soc. 27, 7 (1959).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (6)

J. E. Levitt, W. H. Weber, Appl. Opt. (to be published).

F. P. Schafer, ed., Dye Lasers (Springer-Verlag, New York, 1973).
[CrossRef]

J. Jortner has brought our attention to the work done on anthracene crystals.9,10 Thick crystals give a lifetime of 16 nsec at room temperature and 8 nsec at 70 K. Because thin anthracene crystals will not absorb one photon uniformally, two-photon excitation10 of crystals of variable thickness gave different lifetimes, 27 nsec for 1-cm-thick and 12 nsec for 1-μm-thick crystals. These results were interpreted in terms of radiation trapping by the (thermally populated) hot vibrational bands.

L. M. Logan, I. H. Munro, D. F. Williams, F. R. Lipsettin Molecular Luminescence, E. Lim, ed. (Benjamin, New York, 1969), p. 773.

J. Burak, J. Jortner (unpublished results).

The measurement of the current is consistent with the reported ratio when the PSCm and PSCs were exposed to sunlight. These preliminary results were corrected for scattered light by using a plastic that does not have any dye but possesses the same dimensions as the PSC under investigation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for the measurements of optical excitation, emission spectra, and the photovoltaic current. In all these experiments care was taken to mask the detectors from scattered light.

Fig. 2
Fig. 2

Optical excitation and emission spectra of Rh6G and C6 in PSC’s. Note the broadening of the absorption when compared with the emission spectra. All these spectra are corrected for the exciting light and the detector.

Fig. 3
Fig. 3

Top: emission spectrum of Rh6G in the PSC; λexcit = 5300 Å. Middle: emission spectrum of PSCm (Rh6G/C6) at collection angle of 90°; λexcit, = 4700 Å. Bottom: emission spectrum of PSCm (Rh6G/C6) at collection angle of ~45°; λexcit = 4700 Å. The sharp band at 4700 Å is the reflected exciting light.

Fig. 4
Fig. 4

Optical excitation spectra of PSCm (Rh6G/C6): top, photomultiplier detection; bottom, silicon-cell detection. The two spectra were taken for edge-mounted geometry, and they were corrected for the exciting light and the detector. Dotted lines indicate excitation profiles for the individual dyes in PSCs’s.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

G P = ( A F / A C ) Q A η Q C .
Q A = 0 λ c N ( λ ) [ 1 exp α ( λ ) d ] d λ 0 λ c N ( λ ) d λ ,
R 0 6 = 9 × 10 25 x 2 Φ D F ( ν ¯ ) n 4
C 0 ( A ) = 8 . 35 × 10 3 N 0 1 R 0 3 ,
F ( ν ¯ ) = f D ( e ) f A ( a ) ν ¯ 4 d ν ¯ .

Metrics