Abstract

Simultaneous in situ measurements of the absorption and scattering by aerosols were made in ambient room air and in air with large amounts of added aerosols, such as cigarette smoke. For room aerosols, the extinction contribution due to absorption was typically one half that from scattering. The absorption measurements were made with an acoustically resonant spectrophone powered with a 0.5-W argon laser.

© 1977 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Hodkinson, “The optical measurements of aerosols,” in Aerosol Science, C. N. Davies, ed. (Academic, New York, 1966), pp. 287–357.
  2. R. A. Bryson, G. J. Dittberner, “A non-equilibrium model of hemispheric mean surface temperature,” J. Atmos. Sci. 33, 2094–2105 (1975).
    [CrossRef]
  3. B. M. Herman, S. Robert Browning, R. Rabinoff, “The change in earth-atmosphere albedo and radiational equilibrium temperatures due to stratospheric pollution,” J. Appl. Meteorol. 15, 1057–1067 (1976).
    [CrossRef]
  4. G. Fiocco, G. Grams, A. Mugrai, “Energy exchange and temperatures of aerosols in the earth’s atmosphere (0–60 km),” J. aAtmos. Sci. 33, 2415–2424 (1976).
    [CrossRef]
  5. Chin-I Lin, M. Baker, R. J. Charlson, “Absorption coefficient of atmospheric aerosol: a method of measurement,” Appl. Opt. 12, 1356–1363 (1973).
    [CrossRef] [PubMed]
  6. R. Weiss, R. J. Charlson, A. P. Waggoner, M. B. Baker, D. Covert, D. Thorsell, S. Yuen, “Application of directly measured aerosol radiative properties to climate models,” in Proceedings of the meeting, Atmospheric Aerosols: Their Optical Properties and Effects, Dec. 13–15, 1976 (NASA CP-2004).
  7. S. S. Schleusener, J. D. Lindberg, K. O. White, R. L. Johnson, “Spectrophone measurements of infrared laser energy absorption by atmospheric dust,” Appl. Opt. 15, 2546 (1976).
    [CrossRef] [PubMed]
  8. J. D. Lindberg, L. S. Laude, “Measurement of the absorption coefficient of atmospheric dust,” Appl. Opt. 13, 1923–1927 (1974).
    [CrossRef] [PubMed]
  9. C. H. Chan, “Effective absorption for thermal blooming due to aerosols,” Appl. Phys. Lett. 26, 628–630 (1975).
    [CrossRef]
  10. K. Willeke, K. T. Whitby, “Atmospheric aerosols: size distribution interpretation,” J. Air Pollut. Control Assoc. 25, 529–534 (1975).
    [CrossRef]
  11. V. E. Zuev, Propagation of Visible and Infrared Radiation in the Atmosphere, (Wiley, New York, 1974), p. 338.
  12. M. B. Baker, “Energy absorption by volatile atmospheric aerosol particles,” Atmos. Environ. 10, 241–248 (1976).
    [CrossRef]
  13. C. F. Dewey, R. D. Kamm, C. E. Hackett, “Acoustic amplifier for detection of atmospheric pollutants,” Appl. Phys. Lett. 23, 633–635 (1973).
    [CrossRef]
  14. P. D. Goldan, K. Goto, “An acoustically resonant system for the detection of low-level infrated absorption in atmospheric pollutants,” J. Appl. Phys. 45, 4350–4355 (1974).
    [CrossRef]
  15. E. Max, L. G. Rosengren, “Characteristics of a resonant opto-acoustic gas concentration detector,” Opt. Commun. 11, 422–426 (1974).
    [CrossRef]
  16. J. G. Parker, “Optical absorption in glass: investigation using an acoustic technique,” Appl. Opt. 12, 2974–2977 (1973).
    [CrossRef] [PubMed]
  17. K. T. Whitby, U. of Minn. Particle Lab. Publ. No. 137, July1969 (unpublished).

1976 (4)

B. M. Herman, S. Robert Browning, R. Rabinoff, “The change in earth-atmosphere albedo and radiational equilibrium temperatures due to stratospheric pollution,” J. Appl. Meteorol. 15, 1057–1067 (1976).
[CrossRef]

G. Fiocco, G. Grams, A. Mugrai, “Energy exchange and temperatures of aerosols in the earth’s atmosphere (0–60 km),” J. aAtmos. Sci. 33, 2415–2424 (1976).
[CrossRef]

S. S. Schleusener, J. D. Lindberg, K. O. White, R. L. Johnson, “Spectrophone measurements of infrared laser energy absorption by atmospheric dust,” Appl. Opt. 15, 2546 (1976).
[CrossRef] [PubMed]

M. B. Baker, “Energy absorption by volatile atmospheric aerosol particles,” Atmos. Environ. 10, 241–248 (1976).
[CrossRef]

1975 (3)

C. H. Chan, “Effective absorption for thermal blooming due to aerosols,” Appl. Phys. Lett. 26, 628–630 (1975).
[CrossRef]

K. Willeke, K. T. Whitby, “Atmospheric aerosols: size distribution interpretation,” J. Air Pollut. Control Assoc. 25, 529–534 (1975).
[CrossRef]

R. A. Bryson, G. J. Dittberner, “A non-equilibrium model of hemispheric mean surface temperature,” J. Atmos. Sci. 33, 2094–2105 (1975).
[CrossRef]

1974 (3)

P. D. Goldan, K. Goto, “An acoustically resonant system for the detection of low-level infrated absorption in atmospheric pollutants,” J. Appl. Phys. 45, 4350–4355 (1974).
[CrossRef]

E. Max, L. G. Rosengren, “Characteristics of a resonant opto-acoustic gas concentration detector,” Opt. Commun. 11, 422–426 (1974).
[CrossRef]

J. D. Lindberg, L. S. Laude, “Measurement of the absorption coefficient of atmospheric dust,” Appl. Opt. 13, 1923–1927 (1974).
[CrossRef] [PubMed]

1973 (3)

Baker, M.

Baker, M. B.

M. B. Baker, “Energy absorption by volatile atmospheric aerosol particles,” Atmos. Environ. 10, 241–248 (1976).
[CrossRef]

R. Weiss, R. J. Charlson, A. P. Waggoner, M. B. Baker, D. Covert, D. Thorsell, S. Yuen, “Application of directly measured aerosol radiative properties to climate models,” in Proceedings of the meeting, Atmospheric Aerosols: Their Optical Properties and Effects, Dec. 13–15, 1976 (NASA CP-2004).

Bryson, R. A.

R. A. Bryson, G. J. Dittberner, “A non-equilibrium model of hemispheric mean surface temperature,” J. Atmos. Sci. 33, 2094–2105 (1975).
[CrossRef]

Chan, C. H.

C. H. Chan, “Effective absorption for thermal blooming due to aerosols,” Appl. Phys. Lett. 26, 628–630 (1975).
[CrossRef]

Charlson, R. J.

Chin-I Lin, M. Baker, R. J. Charlson, “Absorption coefficient of atmospheric aerosol: a method of measurement,” Appl. Opt. 12, 1356–1363 (1973).
[CrossRef] [PubMed]

R. Weiss, R. J. Charlson, A. P. Waggoner, M. B. Baker, D. Covert, D. Thorsell, S. Yuen, “Application of directly measured aerosol radiative properties to climate models,” in Proceedings of the meeting, Atmospheric Aerosols: Their Optical Properties and Effects, Dec. 13–15, 1976 (NASA CP-2004).

Covert, D.

R. Weiss, R. J. Charlson, A. P. Waggoner, M. B. Baker, D. Covert, D. Thorsell, S. Yuen, “Application of directly measured aerosol radiative properties to climate models,” in Proceedings of the meeting, Atmospheric Aerosols: Their Optical Properties and Effects, Dec. 13–15, 1976 (NASA CP-2004).

Dewey, C. F.

C. F. Dewey, R. D. Kamm, C. E. Hackett, “Acoustic amplifier for detection of atmospheric pollutants,” Appl. Phys. Lett. 23, 633–635 (1973).
[CrossRef]

Dittberner, G. J.

R. A. Bryson, G. J. Dittberner, “A non-equilibrium model of hemispheric mean surface temperature,” J. Atmos. Sci. 33, 2094–2105 (1975).
[CrossRef]

Fiocco, G.

G. Fiocco, G. Grams, A. Mugrai, “Energy exchange and temperatures of aerosols in the earth’s atmosphere (0–60 km),” J. aAtmos. Sci. 33, 2415–2424 (1976).
[CrossRef]

Goldan, P. D.

P. D. Goldan, K. Goto, “An acoustically resonant system for the detection of low-level infrated absorption in atmospheric pollutants,” J. Appl. Phys. 45, 4350–4355 (1974).
[CrossRef]

Goto, K.

P. D. Goldan, K. Goto, “An acoustically resonant system for the detection of low-level infrated absorption in atmospheric pollutants,” J. Appl. Phys. 45, 4350–4355 (1974).
[CrossRef]

Grams, G.

G. Fiocco, G. Grams, A. Mugrai, “Energy exchange and temperatures of aerosols in the earth’s atmosphere (0–60 km),” J. aAtmos. Sci. 33, 2415–2424 (1976).
[CrossRef]

Hackett, C. E.

C. F. Dewey, R. D. Kamm, C. E. Hackett, “Acoustic amplifier for detection of atmospheric pollutants,” Appl. Phys. Lett. 23, 633–635 (1973).
[CrossRef]

Herman, B. M.

B. M. Herman, S. Robert Browning, R. Rabinoff, “The change in earth-atmosphere albedo and radiational equilibrium temperatures due to stratospheric pollution,” J. Appl. Meteorol. 15, 1057–1067 (1976).
[CrossRef]

Hodkinson, J. R.

J. R. Hodkinson, “The optical measurements of aerosols,” in Aerosol Science, C. N. Davies, ed. (Academic, New York, 1966), pp. 287–357.

Johnson, R. L.

Kamm, R. D.

C. F. Dewey, R. D. Kamm, C. E. Hackett, “Acoustic amplifier for detection of atmospheric pollutants,” Appl. Phys. Lett. 23, 633–635 (1973).
[CrossRef]

Laude, L. S.

Lin, Chin-I

Lindberg, J. D.

Max, E.

E. Max, L. G. Rosengren, “Characteristics of a resonant opto-acoustic gas concentration detector,” Opt. Commun. 11, 422–426 (1974).
[CrossRef]

Mugrai, A.

G. Fiocco, G. Grams, A. Mugrai, “Energy exchange and temperatures of aerosols in the earth’s atmosphere (0–60 km),” J. aAtmos. Sci. 33, 2415–2424 (1976).
[CrossRef]

Parker, J. G.

Rabinoff, R.

B. M. Herman, S. Robert Browning, R. Rabinoff, “The change in earth-atmosphere albedo and radiational equilibrium temperatures due to stratospheric pollution,” J. Appl. Meteorol. 15, 1057–1067 (1976).
[CrossRef]

Robert Browning, S.

B. M. Herman, S. Robert Browning, R. Rabinoff, “The change in earth-atmosphere albedo and radiational equilibrium temperatures due to stratospheric pollution,” J. Appl. Meteorol. 15, 1057–1067 (1976).
[CrossRef]

Rosengren, L. G.

E. Max, L. G. Rosengren, “Characteristics of a resonant opto-acoustic gas concentration detector,” Opt. Commun. 11, 422–426 (1974).
[CrossRef]

Schleusener, S. S.

Thorsell, D.

R. Weiss, R. J. Charlson, A. P. Waggoner, M. B. Baker, D. Covert, D. Thorsell, S. Yuen, “Application of directly measured aerosol radiative properties to climate models,” in Proceedings of the meeting, Atmospheric Aerosols: Their Optical Properties and Effects, Dec. 13–15, 1976 (NASA CP-2004).

Waggoner, A. P.

R. Weiss, R. J. Charlson, A. P. Waggoner, M. B. Baker, D. Covert, D. Thorsell, S. Yuen, “Application of directly measured aerosol radiative properties to climate models,” in Proceedings of the meeting, Atmospheric Aerosols: Their Optical Properties and Effects, Dec. 13–15, 1976 (NASA CP-2004).

Weiss, R.

R. Weiss, R. J. Charlson, A. P. Waggoner, M. B. Baker, D. Covert, D. Thorsell, S. Yuen, “Application of directly measured aerosol radiative properties to climate models,” in Proceedings of the meeting, Atmospheric Aerosols: Their Optical Properties and Effects, Dec. 13–15, 1976 (NASA CP-2004).

Whitby, K. T.

K. Willeke, K. T. Whitby, “Atmospheric aerosols: size distribution interpretation,” J. Air Pollut. Control Assoc. 25, 529–534 (1975).
[CrossRef]

K. T. Whitby, U. of Minn. Particle Lab. Publ. No. 137, July1969 (unpublished).

White, K. O.

Willeke, K.

K. Willeke, K. T. Whitby, “Atmospheric aerosols: size distribution interpretation,” J. Air Pollut. Control Assoc. 25, 529–534 (1975).
[CrossRef]

Yuen, S.

R. Weiss, R. J. Charlson, A. P. Waggoner, M. B. Baker, D. Covert, D. Thorsell, S. Yuen, “Application of directly measured aerosol radiative properties to climate models,” in Proceedings of the meeting, Atmospheric Aerosols: Their Optical Properties and Effects, Dec. 13–15, 1976 (NASA CP-2004).

Zuev, V. E.

V. E. Zuev, Propagation of Visible and Infrared Radiation in the Atmosphere, (Wiley, New York, 1974), p. 338.

Appl. Opt. (4)

Appl. Phys. Lett. (2)

C. F. Dewey, R. D. Kamm, C. E. Hackett, “Acoustic amplifier for detection of atmospheric pollutants,” Appl. Phys. Lett. 23, 633–635 (1973).
[CrossRef]

C. H. Chan, “Effective absorption for thermal blooming due to aerosols,” Appl. Phys. Lett. 26, 628–630 (1975).
[CrossRef]

Atmos. Environ. (1)

M. B. Baker, “Energy absorption by volatile atmospheric aerosol particles,” Atmos. Environ. 10, 241–248 (1976).
[CrossRef]

J. aAtmos. Sci. (1)

G. Fiocco, G. Grams, A. Mugrai, “Energy exchange and temperatures of aerosols in the earth’s atmosphere (0–60 km),” J. aAtmos. Sci. 33, 2415–2424 (1976).
[CrossRef]

J. Air Pollut. Control Assoc. (1)

K. Willeke, K. T. Whitby, “Atmospheric aerosols: size distribution interpretation,” J. Air Pollut. Control Assoc. 25, 529–534 (1975).
[CrossRef]

J. Appl. Meteorol. (1)

B. M. Herman, S. Robert Browning, R. Rabinoff, “The change in earth-atmosphere albedo and radiational equilibrium temperatures due to stratospheric pollution,” J. Appl. Meteorol. 15, 1057–1067 (1976).
[CrossRef]

J. Appl. Phys. (1)

P. D. Goldan, K. Goto, “An acoustically resonant system for the detection of low-level infrated absorption in atmospheric pollutants,” J. Appl. Phys. 45, 4350–4355 (1974).
[CrossRef]

J. Atmos. Sci. (1)

R. A. Bryson, G. J. Dittberner, “A non-equilibrium model of hemispheric mean surface temperature,” J. Atmos. Sci. 33, 2094–2105 (1975).
[CrossRef]

Opt. Commun. (1)

E. Max, L. G. Rosengren, “Characteristics of a resonant opto-acoustic gas concentration detector,” Opt. Commun. 11, 422–426 (1974).
[CrossRef]

Other (4)

R. Weiss, R. J. Charlson, A. P. Waggoner, M. B. Baker, D. Covert, D. Thorsell, S. Yuen, “Application of directly measured aerosol radiative properties to climate models,” in Proceedings of the meeting, Atmospheric Aerosols: Their Optical Properties and Effects, Dec. 13–15, 1976 (NASA CP-2004).

K. T. Whitby, U. of Minn. Particle Lab. Publ. No. 137, July1969 (unpublished).

J. R. Hodkinson, “The optical measurements of aerosols,” in Aerosol Science, C. N. Davies, ed. (Academic, New York, 1966), pp. 287–357.

V. E. Zuev, Propagation of Visible and Infrared Radiation in the Atmosphere, (Wiley, New York, 1974), p. 338.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Sketch of the spectrophone and the arrangement used to isolate it from room noise.

Fig. 2
Fig. 2

Recorder traces showing the observed synchronously detected spectrophone signal with and without aerosols. A millipore filter with a 10-nm pore size was used. The large fluctuations in the signals with unfiltered air can probably be associated with fluctuations in the number of particles illuminated by the 1-mm-diameter laser beam in the spectrophone. babs = 10−5 m−1 corresponds to a signal of 0.24 μV. The Rayleigh scattering contribution to the extinction at 514.5 nm is also about 10−5 m−1.

Tables (1)

Tables Icon

Table 1 Aerosol Extinction Coefficients Relative to Rayleigh Scattering

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

τ = r 2 C particle 3 λ air ,

Metrics