S. Cohn-Sfetcu, M. R. Smith, S. T. Nichols, P. L. Henry, “A digital technique for analysing a class of multicomponent signals,” Proc. IEEE 63, 1460 (1975).

[CrossRef]

S. Cohn-Sfetcu, M. R. Smith, S. T. Nichols, “On the representation of signals by basis kernels with product argument,” Proc. IEEE 63, 326 (1975).

[CrossRef]

M. R. Smith, S. Cohn-Sfetcu, “Comments on fit to experimental data with exponential functions using the fast fourier transform,” Nucl. Instrum. Methods 114, 171 (1974).

[CrossRef]

J. Schlesinger, “Fit to experimental data with exponential functions using the fast fourier transform,” Nucl. Instrum. Methods 106, 503 (1973).

[CrossRef]

D. G. Gardner, J. C. Gardner, G. Lausch, W. W. Meinke, “Method for the analysis of multi-component exponential decays,” J. Chem. Phys. 31, 987 (1959).

S. Cohn-Sfetcu, M. R. Smith, S. T. Nichols, P. L. Henry, “A digital technique for analysing a class of multicomponent signals,” Proc. IEEE 63, 1460 (1975).

[CrossRef]

S. Cohn-Sfetcu, M. R. Smith, S. T. Nichols, “On the representation of signals by basis kernels with product argument,” Proc. IEEE 63, 326 (1975).

[CrossRef]

M. R. Smith, S. Cohn-Sfetcu, “Comments on fit to experimental data with exponential functions using the fast fourier transform,” Nucl. Instrum. Methods 114, 171 (1974).

[CrossRef]

D. G. Gardner, J. C. Gardner, G. Lausch, W. W. Meinke, “Method for the analysis of multi-component exponential decays,” J. Chem. Phys. 31, 987 (1959).

D. G. Gardner, J. C. Gardner, G. Lausch, W. W. Meinke, “Method for the analysis of multi-component exponential decays,” J. Chem. Phys. 31, 987 (1959).

S. Cohn-Sfetcu, M. R. Smith, S. T. Nichols, P. L. Henry, “A digital technique for analysing a class of multicomponent signals,” Proc. IEEE 63, 1460 (1975).

[CrossRef]

D. G. Gardner, J. C. Gardner, G. Lausch, W. W. Meinke, “Method for the analysis of multi-component exponential decays,” J. Chem. Phys. 31, 987 (1959).

D. G. Gardner, J. C. Gardner, G. Lausch, W. W. Meinke, “Method for the analysis of multi-component exponential decays,” J. Chem. Phys. 31, 987 (1959).

S. Cohn-Sfetcu, M. R. Smith, S. T. Nichols, P. L. Henry, “A digital technique for analysing a class of multicomponent signals,” Proc. IEEE 63, 1460 (1975).

[CrossRef]

S. Cohn-Sfetcu, M. R. Smith, S. T. Nichols, “On the representation of signals by basis kernels with product argument,” Proc. IEEE 63, 326 (1975).

[CrossRef]

J. Schlesinger, “Fit to experimental data with exponential functions using the fast fourier transform,” Nucl. Instrum. Methods 106, 503 (1973).

[CrossRef]

S. Cohn-Sfetcu, M. R. Smith, S. T. Nichols, P. L. Henry, “A digital technique for analysing a class of multicomponent signals,” Proc. IEEE 63, 1460 (1975).

[CrossRef]

S. Cohn-Sfetcu, M. R. Smith, S. T. Nichols, “On the representation of signals by basis kernels with product argument,” Proc. IEEE 63, 326 (1975).

[CrossRef]

M. R. Smith, S. Cohn-Sfetcu, “Comments on fit to experimental data with exponential functions using the fast fourier transform,” Nucl. Instrum. Methods 114, 171 (1974).

[CrossRef]

D. G. Gardner, J. C. Gardner, G. Lausch, W. W. Meinke, “Method for the analysis of multi-component exponential decays,” J. Chem. Phys. 31, 987 (1959).

J. Schlesinger, “Fit to experimental data with exponential functions using the fast fourier transform,” Nucl. Instrum. Methods 106, 503 (1973).

[CrossRef]

M. R. Smith, S. Cohn-Sfetcu, “Comments on fit to experimental data with exponential functions using the fast fourier transform,” Nucl. Instrum. Methods 114, 171 (1974).

[CrossRef]

S. Cohn-Sfetcu, M. R. Smith, S. T. Nichols, P. L. Henry, “A digital technique for analysing a class of multicomponent signals,” Proc. IEEE 63, 1460 (1975).

[CrossRef]

S. Cohn-Sfetcu, M. R. Smith, S. T. Nichols, “On the representation of signals by basis kernels with product argument,” Proc. IEEE 63, 326 (1975).

[CrossRef]