Abstract

In a multimode photonic-crystal waveguide, we observe strong enhancement of the photoluminescence of embedded quantum dots at the edges of the so-called mini-stopband that were opened by Bragg diffraction between two guided modes. Taking into account light collection, we relate this observation to the singular photon density of states that is characteristic of a one-dimensional photon system. Furthermore, we quantify by how much the radiation losses smooth the divergence. For the first time to our knowledge, a clear account of the control of spontaneous emission in a one-dimensional system is thus demonstrated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription