Abstract

We report what is to our knowledge the first measurement of the linewidth of the frequency comb lines of a mode-locked Er-doped fiber laser. By propagating the output pulses through fiber as long as 1000 km in a modified self-heterodyne arrangement, we have measured the effective linewidth of the comb lines to be less than 12 kHz on a 5-ms time scale; the width is due primarily to frequency jitter from environmental fluctuations. Deconvolution of the spectral line shapes by use of Voigt analysis yields an upper limit of the intrinsic Lorentzian width of 3 kHz.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Reichert, R. Holzwarth, Th. Udem, and T. W. Hänsch, Opt. Commun. 172, 59 (1999).
    [CrossRef]
  2. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, Phys. Rev. Lett. 84, 5102 (2000).
    [CrossRef] [PubMed]
  3. Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
    [CrossRef] [PubMed]
  4. J. L. Hall and J. Ye, IEEE Trans. Instrum. Meas. 52, 227 (2003).
    [CrossRef]
  5. S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1072 (2003).
    [CrossRef]
  6. T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, Electron. Lett. 35, 720 (1999).
    [CrossRef]
  7. D. M. Baney and W. V. Sorin, in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1998), pp. 169219.
  8. L. B. Mercer, J. Lightwave Technol. 9, 485 (1991).
    [CrossRef]
  9. O. Ishida, J. Lightwave Technol. 9, 1528 (1991).
    [CrossRef]
  10. N. Park, J. W. Dawson, and K. J. Vahala, Opt. Lett. 17, 1274 (1992).
    [CrossRef] [PubMed]
  11. H. Tsuchida, Opt. Lett. 15, 640 (1990).
    [CrossRef]
  12. T. F. Carruthers and I. N. Duling, Opt. Lett. 21, 1927 (1996).
    [CrossRef] [PubMed]
  13. J. W. Lou, T. F. Carruthers, and M. Currie, “4×10GHz mode-locked multiple-wavelength fiber laser,” IEEE Photon. Technol. Lett. (to be published), ().
  14. L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, IEEE J. Quantum Electron. 22, 2070 (1986).
    [CrossRef]

1998

D. M. Baney and W. V. Sorin, in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1998), pp. 169219.

Baney, D. M.

D. M. Baney and W. V. Sorin, in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1998), pp. 169219.

Sorin, W. V.

D. M. Baney and W. V. Sorin, in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1998), pp. 169219.

Other

J. Reichert, R. Holzwarth, Th. Udem, and T. W. Hänsch, Opt. Commun. 172, 59 (1999).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, Th. Udem, and T. W. Hänsch, Phys. Rev. Lett. 84, 5102 (2000).
[CrossRef] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

J. L. Hall and J. Ye, IEEE Trans. Instrum. Meas. 52, 227 (2003).
[CrossRef]

S. A. Diddams, A. Bartels, T. M. Ramond, C. W. Oates, S. Bize, E. A. Curtis, J. C. Bergquist, and L. Hollberg, IEEE J. Sel. Top. Quantum Electron. 9, 1072 (2003).
[CrossRef]

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, Electron. Lett. 35, 720 (1999).
[CrossRef]

D. M. Baney and W. V. Sorin, in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1998), pp. 169219.

L. B. Mercer, J. Lightwave Technol. 9, 485 (1991).
[CrossRef]

O. Ishida, J. Lightwave Technol. 9, 1528 (1991).
[CrossRef]

N. Park, J. W. Dawson, and K. J. Vahala, Opt. Lett. 17, 1274 (1992).
[CrossRef] [PubMed]

H. Tsuchida, Opt. Lett. 15, 640 (1990).
[CrossRef]

T. F. Carruthers and I. N. Duling, Opt. Lett. 21, 1927 (1996).
[CrossRef] [PubMed]

J. W. Lou, T. F. Carruthers, and M. Currie, “4×10GHz mode-locked multiple-wavelength fiber laser,” IEEE Photon. Technol. Lett. (to be published), ().

L. E. Richter, H. I. Mandelberg, M. S. Kruger, and P. A. McGrath, IEEE J. Quantum Electron. 22, 2070 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Optical spectrum of the laser. Comb lines are separated by the 10-GHz repetition rate. (b) Experimental setup. The pulse train is split and recombined in a 90:10 coupler. The delay loop contains 50 km of fiber, an acousto-optic modulator (AOM) at 55 MHz, an Er-doped fiber amplifier (EDFA), and a polarization controller (PC). The recombined output is detected by a fast photodetector (PD) and analyzed on a spectrum analyzer (SA).

Fig. 2
Fig. 2

Representative rf spectra recorded for various delays (open squares), along with fits to Voigt profiles (solid curves). The resolution bandwidth is 300 Hz.

Fig. 3
Fig. 3

Widths of rf spectra versus delay. The FWHM Voigt fits (open circles) are made on a linear scale, whereas the Lorentzian and Gaussian components are retrieved from fits to the log scale. The FWHM approximately follows a square-root behavior (dashed curve). For T<3 ms, Lorentzian error bars from the Voigt fit are smaller than the data markers. The limiting bandwidth (in kilohertz) versus delay (in ms) is also plotted (νlim=5/T) (dotted curve).

Fig. 4
Fig. 4

FM noise spectrum Sf recorded after 100-km propagation, showing 1/f noise and acoustic resonances.

Metrics