Abstract

Optically controlled delay lines in optical fibers are demonstrated by use of the group-velocity control of signal pulses based on stimulated Brillouin scattering. We achieve continuous time delay within the range of 150 ns, much larger than the width of the 40 ns signal pulse, using cascaded fiber segments joined by unidirectional optical attenuators. In the meantime, we also observe a large amount of pulse broadening, which agrees well with a theoretical prediction based on linear theory.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, in Progress in Optics, E. Wolf, ed. (Elsevier, 2002), Vol. 43, p. 497.
    [CrossRef]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
    [CrossRef]
  3. F. M. Kien, J. Q. Liang, and K. Hakuta, IEEE J. Sel. Top. Quantum Electron. 9, 52 (2003).
    [CrossRef]
  4. K. Lee and L. M. Lawandy, Appl. Phys. Lett. 78, 703 (2001).
    [CrossRef]
  5. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995).
    [CrossRef] [PubMed]
  6. S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, R29 (1992).
    [CrossRef]
  7. B. Macke and B. Ségard, Eur. Phys. J. D 23, 125 (2003).
    [CrossRef]
  8. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, Phys. Rev. A 71, 023801 (2005).
    [CrossRef]
  9. K. Y. Song, M. G. Herráez, and L. Thévenaz, Opt. Express 13, 82 (2005).
    [CrossRef] [PubMed]
  10. D. J. Gauthier, 2nd Annual Summer School, Fitzpatrick Center for Photonics and Communication Systems, Duke University, Durham, N.C. (2004).
  11. M. Niklès, L. Thévenaz, and Ph. Robert, J. Lightwave Technol. 15, 1842 (1997).
    [CrossRef]

2005 (2)

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, Phys. Rev. A 71, 023801 (2005).
[CrossRef]

K. Y. Song, M. G. Herráez, and L. Thévenaz, Opt. Express 13, 82 (2005).
[CrossRef] [PubMed]

2003 (2)

B. Macke and B. Ségard, Eur. Phys. J. D 23, 125 (2003).
[CrossRef]

F. M. Kien, J. Q. Liang, and K. Hakuta, IEEE J. Sel. Top. Quantum Electron. 9, 52 (2003).
[CrossRef]

2001 (1)

K. Lee and L. M. Lawandy, Appl. Phys. Lett. 78, 703 (2001).
[CrossRef]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

1997 (1)

M. Niklès, L. Thévenaz, and Ph. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

1995 (1)

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995).
[CrossRef] [PubMed]

1992 (1)

S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, R29 (1992).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Boyd, R. W.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, Phys. Rev. A 71, 023801 (2005).
[CrossRef]

R. W. Boyd and D. J. Gauthier, in Progress in Optics, E. Wolf, ed. (Elsevier, 2002), Vol. 43, p. 497.
[CrossRef]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, R29 (1992).
[CrossRef]

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, Phys. Rev. A 71, 023801 (2005).
[CrossRef]

D. J. Gauthier, 2nd Annual Summer School, Fitzpatrick Center for Photonics and Communication Systems, Duke University, Durham, N.C. (2004).

R. W. Boyd and D. J. Gauthier, in Progress in Optics, E. Wolf, ed. (Elsevier, 2002), Vol. 43, p. 497.
[CrossRef]

Hakuta, K.

F. M. Kien, J. Q. Liang, and K. Hakuta, IEEE J. Sel. Top. Quantum Electron. 9, 52 (2003).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, R29 (1992).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Herráez, M. G.

Jain, M.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995).
[CrossRef] [PubMed]

Kasapi, A.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995).
[CrossRef] [PubMed]

S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, R29 (1992).
[CrossRef]

Kien, F. M.

F. M. Kien, J. Q. Liang, and K. Hakuta, IEEE J. Sel. Top. Quantum Electron. 9, 52 (2003).
[CrossRef]

Lawandy, L. M.

K. Lee and L. M. Lawandy, Appl. Phys. Lett. 78, 703 (2001).
[CrossRef]

Lee, K.

K. Lee and L. M. Lawandy, Appl. Phys. Lett. 78, 703 (2001).
[CrossRef]

Liang, J. Q.

F. M. Kien, J. Q. Liang, and K. Hakuta, IEEE J. Sel. Top. Quantum Electron. 9, 52 (2003).
[CrossRef]

Macke, B.

B. Macke and B. Ségard, Eur. Phys. J. D 23, 125 (2003).
[CrossRef]

Niklès, M.

M. Niklès, L. Thévenaz, and Ph. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Robert, Ph.

M. Niklès, L. Thévenaz, and Ph. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Ségard, B.

B. Macke and B. Ségard, Eur. Phys. J. D 23, 125 (2003).
[CrossRef]

Song, K. Y.

Thévenaz, L.

K. Y. Song, M. G. Herráez, and L. Thévenaz, Opt. Express 13, 82 (2005).
[CrossRef] [PubMed]

M. Niklès, L. Thévenaz, and Ph. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Willner, A. E.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Yin, G. Y.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

K. Lee and L. M. Lawandy, Appl. Phys. Lett. 78, 703 (2001).
[CrossRef]

Eur. Phys. J. D (1)

B. Macke and B. Ségard, Eur. Phys. J. D 23, 125 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. M. Kien, J. Q. Liang, and K. Hakuta, IEEE J. Sel. Top. Quantum Electron. 9, 52 (2003).
[CrossRef]

J. Lightwave Technol. (1)

M. Niklès, L. Thévenaz, and Ph. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (2)

S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, R29 (1992).
[CrossRef]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, Phys. Rev. A 71, 023801 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995).
[CrossRef] [PubMed]

Other (2)

R. W. Boyd and D. J. Gauthier, in Progress in Optics, E. Wolf, ed. (Elsevier, 2002), Vol. 43, p. 497.
[CrossRef]

D. J. Gauthier, 2nd Annual Summer School, Fitzpatrick Center for Photonics and Communication Systems, Duke University, Durham, N.C. (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Gain, refractive-index change ( Δ n ) , and group-index change ( Δ n g ) generated by SBS in an optical fiber. ν 0 and ν B are the optical frequencies of the Brillouin pump wave and the Brillouin shift of the fiber, respectively.

Fig. 2
Fig. 2

Experimental setup for optically controlled delay lines based on SBS by use of cascaded fiber segments. Inset, unidirectional attenuator located in the junction of the segments: DFB LD, distributed feedback laser diode; FUT, fiber under test; EDFA, Er-doped fiber amplifier; PD, photodetector.

Fig. 3
Fig. 3

Traces of the probe pulses for different Brillouin gains, showing a time delay much exceeding the initial pulse width (42 ns).

Fig. 4
Fig. 4

(a) Measured delay as a function of the Brillouin gain experienced by the probe pulse in four 1.1 km fiber segments. The corresponding group-index change is indicated on the right vertical axis. (b) Measured pulse width (FWHM) with respect to Brillouin gain. The relative width (indicated on the right axis) is the ratio between the output and the input pulse widths (input pulse width is 42 ns). Solid curve, theoretical broadening expected from linear theory.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W = W 0 1 + 0.93 ( ln 2 ) G π 2 W 0 2 Δ ν B 2 ,

Metrics