Abstract

Pulses of 100-fsec duration are obtained by synchronous pumping of a colliding-pulse ring dye laser with a mode-locked Ar+-ion laser. Stable operation of the synchronously pumped colliding-pulse mode-locked laser over hours was obtained by a suitable choice of the distance between the gain and the absorber in combination with an appropriate pump-pulse sequence.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, B. I. Green, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981);W. Dietel, J. J. Fontaine, J. C. Diels, Opt. Lett. 8, 4 (1983).
    [CrossRef] [PubMed]
  2. E. M. Garmire, A. Yariv, IEEE J. Quantum Electron. QE-3, 222 (1967);M. S. Stix, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 520 (1983);D. Kühlke, W. Rudolph, B. Wilhelmi, IEEE J. Quantum Electron. 19, 526 (1983).
    [CrossRef]
  3. G. A. Mourou, T. Sizer, Opt. Commun. 41, 47 (1982).
    [CrossRef]
  4. J. Kluge, “Synchronously pumped dye lasers for ultrashort light pulse generation,” thesis (Gesamthochschule Essen, Essen, Federal Republic of Germany, 1984).
  5. A. M. Johnson, W. M. Simpson, Opt. Lett. 8, 554 (1983).
    [CrossRef] [PubMed]
  6. D. Magde, M. W. Windsor, Chem. Phys. Lett. 27, 31 (1974);W. Sibett, J. R. Taylor, D. Welford, IEEE J. Quantum Electron. QE-17, 500 (1981).
    [CrossRef]
  7. M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966);H. P. Weber, J. Appl. Phys. 38, 2231 (1967).
    [CrossRef]
  8. C. C. Shank, R. L. Fork, R. T. Yen, in Picosecond Phenomena III, Vol. 23 of Springer Series in Chemical Physics, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Laubereau, eds. (Springer-Verlag, Heidelberg, 1982), pp. 2–5;J. J. Fontaine, W. Dietel, J. C. Diels, IEEE J. Quantum Electron. QE-19, 1467 (1983).
    [CrossRef]

1983 (1)

1982 (1)

G. A. Mourou, T. Sizer, Opt. Commun. 41, 47 (1982).
[CrossRef]

1981 (1)

R. L. Fork, B. I. Green, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981);W. Dietel, J. J. Fontaine, J. C. Diels, Opt. Lett. 8, 4 (1983).
[CrossRef] [PubMed]

1974 (1)

D. Magde, M. W. Windsor, Chem. Phys. Lett. 27, 31 (1974);W. Sibett, J. R. Taylor, D. Welford, IEEE J. Quantum Electron. QE-17, 500 (1981).
[CrossRef]

1967 (1)

E. M. Garmire, A. Yariv, IEEE J. Quantum Electron. QE-3, 222 (1967);M. S. Stix, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 520 (1983);D. Kühlke, W. Rudolph, B. Wilhelmi, IEEE J. Quantum Electron. 19, 526 (1983).
[CrossRef]

1966 (1)

M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966);H. P. Weber, J. Appl. Phys. 38, 2231 (1967).
[CrossRef]

Fork, R. L.

R. L. Fork, B. I. Green, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981);W. Dietel, J. J. Fontaine, J. C. Diels, Opt. Lett. 8, 4 (1983).
[CrossRef] [PubMed]

C. C. Shank, R. L. Fork, R. T. Yen, in Picosecond Phenomena III, Vol. 23 of Springer Series in Chemical Physics, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Laubereau, eds. (Springer-Verlag, Heidelberg, 1982), pp. 2–5;J. J. Fontaine, W. Dietel, J. C. Diels, IEEE J. Quantum Electron. QE-19, 1467 (1983).
[CrossRef]

Garmire, E. M.

E. M. Garmire, A. Yariv, IEEE J. Quantum Electron. QE-3, 222 (1967);M. S. Stix, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 520 (1983);D. Kühlke, W. Rudolph, B. Wilhelmi, IEEE J. Quantum Electron. 19, 526 (1983).
[CrossRef]

Giordmaine, J. A.

M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966);H. P. Weber, J. Appl. Phys. 38, 2231 (1967).
[CrossRef]

Green, B. I.

R. L. Fork, B. I. Green, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981);W. Dietel, J. J. Fontaine, J. C. Diels, Opt. Lett. 8, 4 (1983).
[CrossRef] [PubMed]

Johnson, A. M.

Kaiser, W.

M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966);H. P. Weber, J. Appl. Phys. 38, 2231 (1967).
[CrossRef]

Kluge, J.

J. Kluge, “Synchronously pumped dye lasers for ultrashort light pulse generation,” thesis (Gesamthochschule Essen, Essen, Federal Republic of Germany, 1984).

Magde, D.

D. Magde, M. W. Windsor, Chem. Phys. Lett. 27, 31 (1974);W. Sibett, J. R. Taylor, D. Welford, IEEE J. Quantum Electron. QE-17, 500 (1981).
[CrossRef]

Maier, M.

M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966);H. P. Weber, J. Appl. Phys. 38, 2231 (1967).
[CrossRef]

Mourou, G. A.

G. A. Mourou, T. Sizer, Opt. Commun. 41, 47 (1982).
[CrossRef]

Shank, C. C.

C. C. Shank, R. L. Fork, R. T. Yen, in Picosecond Phenomena III, Vol. 23 of Springer Series in Chemical Physics, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Laubereau, eds. (Springer-Verlag, Heidelberg, 1982), pp. 2–5;J. J. Fontaine, W. Dietel, J. C. Diels, IEEE J. Quantum Electron. QE-19, 1467 (1983).
[CrossRef]

Shank, C. V.

R. L. Fork, B. I. Green, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981);W. Dietel, J. J. Fontaine, J. C. Diels, Opt. Lett. 8, 4 (1983).
[CrossRef] [PubMed]

Simpson, W. M.

Sizer, T.

G. A. Mourou, T. Sizer, Opt. Commun. 41, 47 (1982).
[CrossRef]

Windsor, M. W.

D. Magde, M. W. Windsor, Chem. Phys. Lett. 27, 31 (1974);W. Sibett, J. R. Taylor, D. Welford, IEEE J. Quantum Electron. QE-17, 500 (1981).
[CrossRef]

Yariv, A.

E. M. Garmire, A. Yariv, IEEE J. Quantum Electron. QE-3, 222 (1967);M. S. Stix, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 520 (1983);D. Kühlke, W. Rudolph, B. Wilhelmi, IEEE J. Quantum Electron. 19, 526 (1983).
[CrossRef]

Yen, R. T.

C. C. Shank, R. L. Fork, R. T. Yen, in Picosecond Phenomena III, Vol. 23 of Springer Series in Chemical Physics, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Laubereau, eds. (Springer-Verlag, Heidelberg, 1982), pp. 2–5;J. J. Fontaine, W. Dietel, J. C. Diels, IEEE J. Quantum Electron. QE-19, 1467 (1983).
[CrossRef]

Appl. Phys. Lett. (1)

R. L. Fork, B. I. Green, C. V. Shank, Appl. Phys. Lett. 38, 671 (1981);W. Dietel, J. J. Fontaine, J. C. Diels, Opt. Lett. 8, 4 (1983).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

D. Magde, M. W. Windsor, Chem. Phys. Lett. 27, 31 (1974);W. Sibett, J. R. Taylor, D. Welford, IEEE J. Quantum Electron. QE-17, 500 (1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. M. Garmire, A. Yariv, IEEE J. Quantum Electron. QE-3, 222 (1967);M. S. Stix, E. P. Ippen, IEEE J. Quantum Electron. QE-19, 520 (1983);D. Kühlke, W. Rudolph, B. Wilhelmi, IEEE J. Quantum Electron. 19, 526 (1983).
[CrossRef]

Opt. Commun. (1)

G. A. Mourou, T. Sizer, Opt. Commun. 41, 47 (1982).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

M. Maier, W. Kaiser, J. A. Giordmaine, Phys. Rev. Lett. 17, 1275 (1966);H. P. Weber, J. Appl. Phys. 38, 2231 (1967).
[CrossRef]

Other (2)

C. C. Shank, R. L. Fork, R. T. Yen, in Picosecond Phenomena III, Vol. 23 of Springer Series in Chemical Physics, K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser, A. Laubereau, eds. (Springer-Verlag, Heidelberg, 1982), pp. 2–5;J. J. Fontaine, W. Dietel, J. C. Diels, IEEE J. Quantum Electron. QE-19, 1467 (1983).
[CrossRef]

J. Kluge, “Synchronously pumped dye lasers for ultrashort light pulse generation,” thesis (Gesamthochschule Essen, Essen, Federal Republic of Germany, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the synchronously pumped CPM ring dye laser. The ring laser (hatched mirrors) consists of focusing mirrors M1–M4, flat mirrors M5 and M6, a 2.5% transmission output coupler OC, a gain jet G, and an absorber dye jet A. The pump geometry (filled mirrors) is indicated by the broken lines. The pump beam is divided into two parts of equal power by the beam splitter BS. The reflected beam is focused (mirror MP) directly into the gain jet, whereas the transmitted beam first passes the optical delay line and is then focused into the gain dye jet.

Fig. 2
Fig. 2

ⓐ Autocorrelation trace of pulses from the synchronously pumped CPM dye laser. FWHH, 170 fsec. A pulse duration of 110 fsec is calculated assuming sech2-shaped pulses. ⓑ Cross-correlation trace of the counterpropagating pulses from the synchronously pumped CPM laser. The curve has the same width of 170 fsec as the autocorrelation trace, demonstrating the perfect synchronization of the two counterpropagating pulses.

Fig. 3
Fig. 3

Spectrum of the dye-laser pulses from the synchronously pumped CPM laser. The bandwidth product tpΔν = 0.4 is close to the value 0.315 for sech2-shaped pulses.

Metrics