Abstract

Using ultrahigh-Q toroid microcavities on a chip, we demonstrate a monolithic microcavity Raman laser. Cavity photon lifetimes in excess of 100 ns combined with mode volumes typically of less than 1000µm3 significantly reduce the threshold for stimulated Raman scattering. In conjunction with the high ideality of a tapered optical fiber coupling junction, stimulated Raman lasing is observed at an ultralow threshold (as low as 74 µW of fiber-launched power at 1550 nm) with high efficiency (up to 45% at the critical coupling point) in good agreement with theoretical modeling. Equally important, the wafer-scale nature of these devices should permit integration with other photonic, mechanical, or electrical functionality on a chip.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
    [CrossRef] [PubMed]
  2. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
    [CrossRef]
  3. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities, Vol. 3 of Advanced Series in Applied Physics (World Scientific, Singapore, 1996).
  4. H. B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
    [CrossRef] [PubMed]
  5. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
    [CrossRef] [PubMed]
  6. M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
    [CrossRef] [PubMed]
  7. H. A. Haus, Electromagnetic Fields and Energy (Prentice-Hall, Englewood Cliffs, N.J., 1989).
  8. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
    [CrossRef]
  9. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
    [CrossRef]
  10. Veff≡∫E→p2dV∫E→R2dV/∫E→p2E→R2dV and is approximately twice the mode volume.

2003 (2)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

2002 (2)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

1994 (1)

H. B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef] [PubMed]

1989 (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

Campillo, A. J.

H. B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef] [PubMed]

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities, Vol. 3 of Advanced Series in Applied Physics (World Scientific, Singapore, 1996).

Chang, R. K.

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities, Vol. 3 of Advanced Series in Applied Physics (World Scientific, Singapore, 1996).

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Haus, H. A.

H. A. Haus, Electromagnetic Fields and Energy (Prentice-Hall, Englewood Cliffs, N.J., 1989).

Ilchenko, V. S.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
[CrossRef]

Lin, H. B.

H. B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef] [PubMed]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
[CrossRef]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
[CrossRef]

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

Nature (2)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature 421, 925 (2003).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 393 (1989).
[CrossRef]

Phys. Rev. Lett. (3)

M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).
[CrossRef] [PubMed]

H. B. Lin and A. J. Campillo, Phys. Rev. Lett. 73, 2440 (1994).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef]

Other (3)

Veff≡∫E→p2dV∫E→R2dV/∫E→p2E→R2dV and is approximately twice the mode volume.

H. A. Haus, Electromagnetic Fields and Energy (Prentice-Hall, Englewood Cliffs, N.J., 1989).

R. K. Chang and A. J. Campillo, Optical Processes in Microcavities, Vol. 3 of Advanced Series in Applied Physics (World Scientific, Singapore, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning electron microscope side profile of a toroid microcavity showing the principal (D) and minor (d) toroid diameters.

Fig. 2
Fig. 2

Raman emission spectrum of a toroid microcavity showing single-mode oscillation. The pump is located at 1550 nm, and the Raman emission is shifted 12.5 THz into the 1650-nm band. Inset, bidirectional Raman emission as a function of pump power for a 58µm-diameter toroid microcavity (Q0=0.6×108) at the critical point. The threshold is 250 µW, and the bidirectional conversion efficiency is 45%.

Fig. 3
Fig. 3

Main figure: experimental and theoretical effective mode volume10 (in cubic micrometers) of toroid microcavities as a function of the toroid minor diameter (d) for fixed principal diameter D (D=50 µm). The case d=D corresponds to a microsphere, and the data shown are taken from Ref. 1 for comparison. The solid and dotted curves refer to the mode volume of a fundamental toroidal WGM (TM and TE case, respectively) obtained by numerical modeling. Inset, optical micrograph of an 80µm-diameter toroid microcavity coupled to a tapered optical fiber.

Fig. 4
Fig. 4

Broadband frequency generation in a microtoroid Raman laser pumped far above threshold at 1550-nm wavelength. Inset, 2.5 mW of output power from a single Raman emission wavelength near 1680 nm. The modes are spaced with the free spectral range of the cavity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dPRamandPpump=ηex=2λpλR1+1K-2.
Pthresh=CΓπ2n2λpλRgRVeff1Q0P1Q0R×1+Kp2Kp1+KR.

Metrics