Abstract

The intrinsic frequency fluctuations of two single-mode quantum cascade (QC) distributed-feedback lasers operating continuously at a wavelength of 8.5 µm are reported. A Doppler-limited rovibrational resonance of nitrous oxide is used to transform the frequency noise into measurable intensity fluctuations. The QC lasers, along with recently improved current controllers, exhibit a free-running frequency stability of 150 kHz over a 15-ms time interval.

© 2002 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Kilohertz linewidth from frequency-stabilized mid-infrared quantum cascade lasers

Richard M. Williams, James F. Kelly, John S. Hartman, Steven W. Sharpe, Matthew S. Taubman, John L. Hall, Federico Capasso, Claire Gmachl, Deborah L. Sivco, James N. Baillargeon, and Alfred Y. Cho
Opt. Lett. 24(24) 1844-1846 (1999)

All-electrical frequency noise reduction and linewidth narrowing in quantum cascade lasers

Ilia Sergachev, Richard Maulini, Alfredo Bismuto, Stéphane Blaser, Tobias Gresch, Yves Bidaux, Antoine Müller, Stéphane Schilt, and Thomas Südmeyer
Opt. Lett. 39(22) 6411-6414 (2014)

Narrow-linewidth quantum cascade laser at 8.6  μm

Eugenio Fasci, Nicola Coluccelli, Marco Cassinerio, Alessio Gambetta, Laurent Hilico, Livio Gianfrani, Paolo Laporta, Antonio Castrillo, and Gianluca Galzerano
Opt. Lett. 39(16) 4946-4949 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription