Abstract

We demonstrate holographic recording in a new photopolymer system. The recording material is created by copolymerization of an optically inert monomer, methyl methacrylate, and a second monomer that is optically sensitive. On exposure of the recording material to light, a portion of the optically sensitive component detaches from the polymer matrix and causes hologram amplification through diffusion of the free molecules. We measured postrecording grating amplifications as high as 170% by this process. The recorded holograms are persistent at room temperature under continuous illumination at the recording wavelength.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, and A. Hill, Opt. Lett. 23, 1710 (1998).
    [CrossRef]
  2. S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R. F. Madrigal, M. Ulibarrena, and D. Levy, Appl. Opt. 37, 7604 (1998).
    [CrossRef]
  3. D. A. Waldman, H.-Y. S. Li, and M. G. Horner, J. Imaging Sci. Technol. 41, 497 (1997).
  4. A. V. Veniaminov, V. F. Goncharov, and A. P. Popov, Opt. Spektrosk. 70, 864 (1991).
  5. V. I. Sukhanov, J. Opt. Technol. 61, 49 (1994).
  6. G. J. Steckman, I. Solomatine, G. Zhou, and D. Psaltis, Opt. Lett. 23, 1310 (1998).
    [CrossRef]
  7. K. Y. Hsu, S. H. Lin, W. T. Whang, and W. Z. Chen, Proc. SPIE 3801, 66 (1999).
    [CrossRef]
  8. R. P. Shishkina and V. N. Berezhnaya, Russ. Chem. Rev. 63, 139 (1994).
    [CrossRef]

1999

K. Y. Hsu, S. H. Lin, W. T. Whang, and W. Z. Chen, Proc. SPIE 3801, 66 (1999).
[CrossRef]

1998

1997

D. A. Waldman, H.-Y. S. Li, and M. G. Horner, J. Imaging Sci. Technol. 41, 497 (1997).

1994

V. I. Sukhanov, J. Opt. Technol. 61, 49 (1994).

R. P. Shishkina and V. N. Berezhnaya, Russ. Chem. Rev. 63, 139 (1994).
[CrossRef]

1991

A. V. Veniaminov, V. F. Goncharov, and A. P. Popov, Opt. Spektrosk. 70, 864 (1991).

Berezhnaya, V. N.

R. P. Shishkina and V. N. Berezhnaya, Russ. Chem. Rev. 63, 139 (1994).
[CrossRef]

Blaya, S.

Campbell, S.

Carretero, L.

Chen, W. Z.

K. Y. Hsu, S. H. Lin, W. T. Whang, and W. Z. Chen, Proc. SPIE 3801, 66 (1999).
[CrossRef]

Curtis, K.

Dhar, L.

Fimia, A.

Goncharov, V. F.

A. V. Veniaminov, V. F. Goncharov, and A. P. Popov, Opt. Spektrosk. 70, 864 (1991).

Hill, A.

Horner, M. G.

D. A. Waldman, H.-Y. S. Li, and M. G. Horner, J. Imaging Sci. Technol. 41, 497 (1997).

Hsu, K. Y.

K. Y. Hsu, S. H. Lin, W. T. Whang, and W. Z. Chen, Proc. SPIE 3801, 66 (1999).
[CrossRef]

Levy, D.

Li, H.-Y. S.

D. A. Waldman, H.-Y. S. Li, and M. G. Horner, J. Imaging Sci. Technol. 41, 497 (1997).

Lin, S. H.

K. Y. Hsu, S. H. Lin, W. T. Whang, and W. Z. Chen, Proc. SPIE 3801, 66 (1999).
[CrossRef]

Madrigal, R. F.

Mallavia, R.

Popov, A. P.

A. V. Veniaminov, V. F. Goncharov, and A. P. Popov, Opt. Spektrosk. 70, 864 (1991).

Psaltis, D.

Schilling, M.

Shishkina, R. P.

R. P. Shishkina and V. N. Berezhnaya, Russ. Chem. Rev. 63, 139 (1994).
[CrossRef]

Solomatine, I.

Steckman, G. J.

Sukhanov, V. I.

V. I. Sukhanov, J. Opt. Technol. 61, 49 (1994).

Tackitt, M.

Ulibarrena, M.

Veniaminov, A. V.

A. V. Veniaminov, V. F. Goncharov, and A. P. Popov, Opt. Spektrosk. 70, 864 (1991).

Waldman, D. A.

D. A. Waldman, H.-Y. S. Li, and M. G. Horner, J. Imaging Sci. Technol. 41, 497 (1997).

Whang, W. T.

K. Y. Hsu, S. H. Lin, W. T. Whang, and W. Z. Chen, Proc. SPIE 3801, 66 (1999).
[CrossRef]

Wilson, W.

Zhou, G.

Appl. Opt.

J. Imaging Sci. Technol.

D. A. Waldman, H.-Y. S. Li, and M. G. Horner, J. Imaging Sci. Technol. 41, 497 (1997).

J. Opt. Technol.

V. I. Sukhanov, J. Opt. Technol. 61, 49 (1994).

Opt. Lett.

Opt. Spektrosk.

A. V. Veniaminov, V. F. Goncharov, and A. P. Popov, Opt. Spektrosk. 70, 864 (1991).

Proc. SPIE

K. Y. Hsu, S. H. Lin, W. T. Whang, and W. Z. Chen, Proc. SPIE 3801, 66 (1999).
[CrossRef]

Russ. Chem. Rev.

R. P. Shishkina and V. N. Berezhnaya, Russ. Chem. Rev. 63, 139 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Synthesized monomer form of the NQ chromophore. (b) Copolymer of the NQ chromophore with methyl methacrylate and the photochemical reaction that causes detachment from the polymer chain.

Fig. 2
Fig. 2

Absorption spectrum for a 0.5-mm-thick sample with a chromophore concentration of 0.1% by weight.

Fig. 3
Fig. 3

Diffraction efficiency versus exposure energy for 11 holograms recorded in a 0.6-mm-thick sample with a chromophore concentration of 0.1% by weight, before and after baking.

Fig. 4
Fig. 4

Angle-selectivity measurements of holograms recorded in materials with 0.05% and 0.4% chromophore concentrations.

Fig. 5
Fig. 5

Dependence of the maximum diffraction efficiency and amplification of the recorded holograms in the NQ methyl methacrylate copolymer, after 11 days of baking, on the chromophore concentration. The samples were 0.5 mm thick.

Fig. 6
Fig. 6

Decay in hologram strength with exposure to illumination after recording and thermal amplification owing to the detachment of the remaining attached chromophores.

Metrics