Abstract

We report single-pass difference-frequency generation of mid-infrared femtosecond pulses tunable in the 3.24.8μm range from a two-branch mode-locked erbium-doped fiber source. Average power levels of up to 1.1mW at a repetition rate of 82MHz are obtained in the mid infrared. This is achieved via nonlinear mixing of 170mW, 65fs pump pulses at a fixed wavelength of 1.58μm, with 11.5mW, 40fs pulses tunable in the near-infrared range between 1.05 and 1.18μm. These values indicate that the tunable near-infrared input component is downconverted with a quantum efficiency that exceeds 30%.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Petrov, F. Rotermund, and F. Noak, J. Opt. A, Pure Appl. Opt. 3, R1 (2001).
    [CrossRef]
  2. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
    [CrossRef]
  3. Y. Deng, F. Lu, and W. H. Knox, Opt. Express 13, 4589 (2005).
    [CrossRef] [PubMed]
  4. A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
    [CrossRef]
  5. C. P. Hauri, P. Schlup, G. Arisholm, J. Biegert, and U. Keller, Opt. Lett. 29, 1369 (2004).
    [CrossRef] [PubMed]
  6. J. L. Krause, K. J. Schafer, and K. C. Kullander, Phys. Rev. Lett. 68, 3535 (1992).
    [CrossRef] [PubMed]
  7. K. Moutzouris, F. Adler, F. Sotier, D. Trautlein, and A. Leitenstorfer, Opt. Lett. 31, 1148 (2006).
    [CrossRef] [PubMed]
  8. K. Moutzouris, F. Sotier, F. Adler, and A. Leitenstorfer, Opt. Express 14, 1905 (2006).
    [CrossRef] [PubMed]
  9. F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, and F. Tauser, Opt. Express 12, 5872 (2004).
    [CrossRef] [PubMed]
  10. E. Benkler, H. R. Telle, A. Zach, and F. Tauser, Opt. Express 13, 5662 (2005).
    [CrossRef] [PubMed]
  11. C. G. F. Keilmann and R. Holzwarth, Opt. Lett. 29, 1542 (2004).
    [CrossRef] [PubMed]
  12. F. Tauser, F. Adler, and A. Leitenstorfer, Opt. Lett. 29, 516 (2004).
    [CrossRef] [PubMed]
  13. G. Arisholm, Opt. Express 14, 2543 (1997).
  14. R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
    [CrossRef]

2006

2005

2004

2001

V. Petrov, F. Rotermund, and F. Noak, J. Opt. A, Pure Appl. Opt. 3, R1 (2001).
[CrossRef]

1999

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
[CrossRef]

1997

G. Arisholm, Opt. Express 14, 2543 (1997).

1993

1992

A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
[CrossRef]

J. L. Krause, K. J. Schafer, and K. C. Kullander, Phys. Rev. Lett. 68, 3535 (1992).
[CrossRef] [PubMed]

Adler, F.

Arisholm, G.

Benkler, E.

Biegert, J.

Deng, Y.

Dubietis, A.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
[CrossRef]

Dunlop, A. E.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
[CrossRef]

Grosche, G.

Hauri, C. P.

Holzwarth, R.

Jonusauskas, G.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
[CrossRef]

Kane, D. J.

Keilmann, C. G. F.

Keller, U.

C. P. Hauri, P. Schlup, G. Arisholm, J. Biegert, and U. Keller, Opt. Lett. 29, 1369 (2004).
[CrossRef] [PubMed]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
[CrossRef]

Knox, W. H.

Krause, J. L.

J. L. Krause, K. J. Schafer, and K. C. Kullander, Phys. Rev. Lett. 68, 3535 (1992).
[CrossRef] [PubMed]

Kullander, K. C.

J. L. Krause, K. J. Schafer, and K. C. Kullander, Phys. Rev. Lett. 68, 3535 (1992).
[CrossRef] [PubMed]

Leitenstorfer, A.

Lipphardt, B.

Lu, F.

Moutzouris, K.

Noak, F.

V. Petrov, F. Rotermund, and F. Noak, J. Opt. A, Pure Appl. Opt. 3, R1 (2001).
[CrossRef]

Petrov, V.

V. Petrov, F. Rotermund, and F. Noak, J. Opt. A, Pure Appl. Opt. 3, R1 (2001).
[CrossRef]

Piskarskas, A.

A. Dubietis, G. Jonusauskas, and A. Piskarskas, Opt. Commun. 88, 437 (1992).
[CrossRef]

Rotermund, F.

V. Petrov, F. Rotermund, and F. Noak, J. Opt. A, Pure Appl. Opt. 3, R1 (2001).
[CrossRef]

Schafer, K. J.

J. L. Krause, K. J. Schafer, and K. C. Kullander, Phys. Rev. Lett. 68, 3535 (1992).
[CrossRef] [PubMed]

Schlup, P.

Schnatz, H.

Sotier, F.

Steinmeyer, G.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
[CrossRef]

Stenger, J.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
[CrossRef]

Sutter, D. H.

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
[CrossRef]

Tauser, F.

Telle, H. R.

E. Benkler, H. R. Telle, A. Zach, and F. Tauser, Opt. Express 13, 5662 (2005).
[CrossRef] [PubMed]

H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, Appl. Phys. B 69, 327 (1999).
[CrossRef]

Trautlein, D.

Trebino, R.

Zach, A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup: M, gold-coated mirrors; FLO, fiber-laser oscillator; FLA, fiber-laser amplifier; HNLF, highly nonlinear fiber; f i , lenses of focal length of 30 , 40 , 30 , and 75 mm , for i = 1 , 2, 3, and 4, respectively; LN, fan-out poled MgO : LiNbO 3 nonlinear crystal. The solid line indicates the beam path of the fundamental laser component at 1.58 μ m . The dashed line follows the tunable near-IR component.

Fig. 2
Fig. 2

Typical selection of normalized mid-IR spectra throughout the tuning range of the DFG converter.

Fig. 3
Fig. 3

Mid-IR average power as a function of central wavelength.

Fig. 4
Fig. 4

Theoretical three-dimensional DFG power (solid curve) and pulse duration (dotted curve) as a function of near-IR input pulse delay. Comparison with experimental measurements (squares) exhibits excellent agreement. The simulated spectrum at a central wavelength of 3.6 μ m (inset) results in 330 nm FWHM. This value also agrees with experimental measurements (see the experimental spectra in Fig. 2). Maximum output power occurs for a time delay of 130 fs , corresponding to a theoretical pulse duration of 53 fs . Positive time delay values assume a leading 1.58 μ m pulse.

Metrics