Abstract

We demonstrate the existence of coherent coupling effects in pump–probe measurements with collinear, copropagating beams, despite the absence of any induced spatial gratings in this geometry. The coherent interaction, which is found to be similar but not identical to that for crossed beams, must be taken into account in analyzing relaxation processes occurring on the time scale of the laser pulse. These coherent effects cannot generally be eliminated by detecting the total change in energy in both the pump and probe beams.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Ippen, C. V. Shank, in Ultrashort Light Pulses, S. L. Shapiro, ed., Vol. 18 of Topics in Applied Physics (Springer, Berlin, 1977), p. 83.
    [CrossRef]
  2. A. von Jena, H. E. Lessing, Appl. Phys. 19, 131 (1979).
    [CrossRef]
  3. Z. Vardeny, J. Tauc, Opt. Commun. 39, 396 (1981).
    [CrossRef]
  4. B. S. Wherrett, A. L. Smirl, T. F. Boggess, IEEE J. Quantum Electron. QE-19, 680 (1983).
    [CrossRef]
  5. A. Penzkofer, W. Falkenstein, Chem. Phys. Lett. 44, 547 (1976).
    [CrossRef]
  6. C. L. Tang, D. J. Erskine, Phys. Rev. Lett. 51, 840 (1983).
    [CrossRef]
  7. A. J. Taylor, D. J. Erskine, C. L. Tang, Chem. Phys. Lett. 103, 430 (1984).
    [CrossRef]

1984

A. J. Taylor, D. J. Erskine, C. L. Tang, Chem. Phys. Lett. 103, 430 (1984).
[CrossRef]

1983

C. L. Tang, D. J. Erskine, Phys. Rev. Lett. 51, 840 (1983).
[CrossRef]

B. S. Wherrett, A. L. Smirl, T. F. Boggess, IEEE J. Quantum Electron. QE-19, 680 (1983).
[CrossRef]

1981

Z. Vardeny, J. Tauc, Opt. Commun. 39, 396 (1981).
[CrossRef]

1979

A. von Jena, H. E. Lessing, Appl. Phys. 19, 131 (1979).
[CrossRef]

1976

A. Penzkofer, W. Falkenstein, Chem. Phys. Lett. 44, 547 (1976).
[CrossRef]

Boggess, T. F.

B. S. Wherrett, A. L. Smirl, T. F. Boggess, IEEE J. Quantum Electron. QE-19, 680 (1983).
[CrossRef]

Erskine, D. J.

A. J. Taylor, D. J. Erskine, C. L. Tang, Chem. Phys. Lett. 103, 430 (1984).
[CrossRef]

C. L. Tang, D. J. Erskine, Phys. Rev. Lett. 51, 840 (1983).
[CrossRef]

Falkenstein, W.

A. Penzkofer, W. Falkenstein, Chem. Phys. Lett. 44, 547 (1976).
[CrossRef]

Ippen, E. P.

E. P. Ippen, C. V. Shank, in Ultrashort Light Pulses, S. L. Shapiro, ed., Vol. 18 of Topics in Applied Physics (Springer, Berlin, 1977), p. 83.
[CrossRef]

Lessing, H. E.

A. von Jena, H. E. Lessing, Appl. Phys. 19, 131 (1979).
[CrossRef]

Penzkofer, A.

A. Penzkofer, W. Falkenstein, Chem. Phys. Lett. 44, 547 (1976).
[CrossRef]

Shank, C. V.

E. P. Ippen, C. V. Shank, in Ultrashort Light Pulses, S. L. Shapiro, ed., Vol. 18 of Topics in Applied Physics (Springer, Berlin, 1977), p. 83.
[CrossRef]

Smirl, A. L.

B. S. Wherrett, A. L. Smirl, T. F. Boggess, IEEE J. Quantum Electron. QE-19, 680 (1983).
[CrossRef]

Tang, C. L.

A. J. Taylor, D. J. Erskine, C. L. Tang, Chem. Phys. Lett. 103, 430 (1984).
[CrossRef]

C. L. Tang, D. J. Erskine, Phys. Rev. Lett. 51, 840 (1983).
[CrossRef]

Tauc, J.

Z. Vardeny, J. Tauc, Opt. Commun. 39, 396 (1981).
[CrossRef]

Taylor, A. J.

A. J. Taylor, D. J. Erskine, C. L. Tang, Chem. Phys. Lett. 103, 430 (1984).
[CrossRef]

Vardeny, Z.

Z. Vardeny, J. Tauc, Opt. Commun. 39, 396 (1981).
[CrossRef]

von Jena, A.

A. von Jena, H. E. Lessing, Appl. Phys. 19, 131 (1979).
[CrossRef]

Wherrett, B. S.

B. S. Wherrett, A. L. Smirl, T. F. Boggess, IEEE J. Quantum Electron. QE-19, 680 (1983).
[CrossRef]

Appl. Phys.

A. von Jena, H. E. Lessing, Appl. Phys. 19, 131 (1979).
[CrossRef]

Chem. Phys. Lett.

A. Penzkofer, W. Falkenstein, Chem. Phys. Lett. 44, 547 (1976).
[CrossRef]

A. J. Taylor, D. J. Erskine, C. L. Tang, Chem. Phys. Lett. 103, 430 (1984).
[CrossRef]

IEEE J. Quantum Electron.

B. S. Wherrett, A. L. Smirl, T. F. Boggess, IEEE J. Quantum Electron. QE-19, 680 (1983).
[CrossRef]

Opt. Commun.

Z. Vardeny, J. Tauc, Opt. Commun. 39, 396 (1981).
[CrossRef]

Phys. Rev. Lett.

C. L. Tang, D. J. Erskine, Phys. Rev. Lett. 51, 840 (1983).
[CrossRef]

Other

E. P. Ippen, C. V. Shank, in Ultrashort Light Pulses, S. L. Shapiro, ed., Vol. 18 of Topics in Applied Physics (Springer, Berlin, 1977), p. 83.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Induced probe transmission in cresyl violet obtained with (a) nearly transform-limited pulses and (b) pulses that were spectrally broadened in an optical fiber. Solid lines are the integrals of the experimentally measured intensity autocorrelation functions.

Fig. 2
Fig. 2

Induced probe transmission in cresyl violet as a function of change in delay time near zero delay showing fringes at twice the optical frequency (2π/ω = 1.97 fsec).

Fig. 3
Fig. 3

Total transmitted intensity in cresyl violet using spectrally broadened pulses of equal intensity. The pulse duration in these measurements was 7 psec (FWHM).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P i ( 3 ) ( t ) = i E j ( t ) d t E k * ( t ) E l ( t ) A ijkl ( t t ) .
S = Re d t d t E i * ( t ) × E j ( t ) E k * ( t ) E l ( t ) A ijkl ( t t ) .
S ( τ ) = β ( τ ) + β ( τ ) + γ ( τ ) ,
β ( τ ) = Re [ d t d t E * ( t τ ) E ( t ) E * ( t ) × E ( t τ ) A xyyx ( t t ) ] ,
β ( τ ) = Re [ e 2 i ω τ d t d t E * ( t τ ) E ( t ) × E * ( t τ ) E ( t ) A xyxy ( t t ) ] ,
γ ( τ ) = Re [ d t A xxyy ( τ t ) × d t | E ( t ) | 2 | E ( t t ) | 2 ] .

Metrics