Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Noise in homodyne detection

Not Accessible

Your library or personal account may give you access

Abstract

A simple but rigorous analysis of the important sources of noise in homodyne detection is presented. Output noise and signal-to-noise ratios are compared for direct detection, conventional (one-port) homodyning, and two-port homodyning, in which one monitors both output ports of a 50–50 beam splitter. It is shown that two-port homodyning is insensitive to local-oscillator quadrature-phase noise and hence provides (1) a means of detecting reduced quadrature-phase fluctuations (squeezing) that is perhaps more practical than one-port homodyning and (2) an output signal-to-noise ratio that can be a modest to significant improvement over that of one-port homodyning and direct detection.

© 1984 Optical Society of America

Full Article  |  PDF Article
More Like This
Noise in homodyne and heterodyne detection

Horace P. Yuen and Vincent W. S. Chan
Opt. Lett. 8(3) 177-179 (1983)

Local-oscillator excess-noise suppression for homodyne and heterodyne detection

G. L. Abbas, V. W. S. Chan, and T. K. Yee
Opt. Lett. 8(8) 419-421 (1983)

Optimizing homodyne detection of quadrature-noise squeezing by local-oscillator selection

Jeffrey H. Shapiro and Asif Shakeel
J. Opt. Soc. Am. B 14(2) 232-249 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved