Abstract

Observations of optical bistability are reported for a system composed of multiple atomic beams passing through a high-finesse optical cavity. Both the transmitted power and the intracavity fluorescent intensity have been recorded as functions of incident laser power for zero cavity and atomic detunings. A quantitative study has been made of the evolution of the steady-state switching intensities from well below the critical onset of bistability to well above this point. The results show reasonable agreement with a Gaussian-beam theory of optical bistability, but systematic departures are noted.

© 1982 Optical Society of America

Full Article  |  PDF Article

Corrections

D. E. Grant and H. J. Kimble, "Optical bistability for two-level atoms in a standing-wave cavity: errata," Opt. Lett. 8, 66-66 (1983)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-8-1-66

References

  • View by:
  • |
  • |
  • |

  1. H. Seidel, U.S. Patent No.3,610,731 (October5, 1971); A. Szöke, V. Daneu, J. Goldhar, N. A. Kurnit, Appl. Phys. Lett. 15, 376 (1969); J. W. Austin, L. G. DeShazer, J. Opt. Soc. Am. 61, 650 (1971); E. Spiller, J. Opt. Soc. Am. 61, 669 (1971), J. Appl. Phys. 43, 1673 (1972).
    [CrossRef]
  2. S. L. McCall, Phys. Rev. A 9, 1515 (1974).
    [CrossRef]
  3. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976).
    [CrossRef]
  4. R. Bonifacio, L. A. Lugiato, Opt. Commun. 19, 172 (1976).
    [CrossRef]
  5. For a review of the theoretical and experimental work in this field, see the article by H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, Opt. News 5(3), 6–12 (1979).
    [CrossRef]
  6. C. M. Bowden, M. Ciftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1981).
    [CrossRef]
  7. P. W. Smith, ed., IEEE J. Quantum Electron., Special Issue on Optical Bistability, QE-17 (1981).
  8. W. J. Sandle, A. Gallagher, Phys. Rev. A 24, 2017 (1981).
    [CrossRef]
  9. K. G. Weyer, H. Widenmann, M. Rateike, W. R. MacGillivray, P. Meystre, H. Walther, Opt. Commun. 37, 426 (1981).
    [CrossRef]
  10. H. J. Kimble, D. E. Grant, J. Opt. Soc. Am. 12, 1639(A) (1981).
  11. J. A. Abate, Opt. Commun. 10, 269 (1974).
    [CrossRef]
  12. P. D. Drummond, IEEE J. Quantum Electron. QE-17, 301 (1981).
    [CrossRef]
  13. R. J. Ballagh, J. Cooper, M. W. Hamilton, W. J. Sandle, D. M. Warrington, Opt. Commun. 37, 143 (1981).
    [CrossRef]

1981 (6)

P. W. Smith, ed., IEEE J. Quantum Electron., Special Issue on Optical Bistability, QE-17 (1981).

W. J. Sandle, A. Gallagher, Phys. Rev. A 24, 2017 (1981).
[CrossRef]

K. G. Weyer, H. Widenmann, M. Rateike, W. R. MacGillivray, P. Meystre, H. Walther, Opt. Commun. 37, 426 (1981).
[CrossRef]

H. J. Kimble, D. E. Grant, J. Opt. Soc. Am. 12, 1639(A) (1981).

P. D. Drummond, IEEE J. Quantum Electron. QE-17, 301 (1981).
[CrossRef]

R. J. Ballagh, J. Cooper, M. W. Hamilton, W. J. Sandle, D. M. Warrington, Opt. Commun. 37, 143 (1981).
[CrossRef]

1979 (1)

For a review of the theoretical and experimental work in this field, see the article by H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, Opt. News 5(3), 6–12 (1979).
[CrossRef]

1976 (2)

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976).
[CrossRef]

R. Bonifacio, L. A. Lugiato, Opt. Commun. 19, 172 (1976).
[CrossRef]

1974 (2)

S. L. McCall, Phys. Rev. A 9, 1515 (1974).
[CrossRef]

J. A. Abate, Opt. Commun. 10, 269 (1974).
[CrossRef]

Abate, J. A.

J. A. Abate, Opt. Commun. 10, 269 (1974).
[CrossRef]

Ballagh, R. J.

R. J. Ballagh, J. Cooper, M. W. Hamilton, W. J. Sandle, D. M. Warrington, Opt. Commun. 37, 143 (1981).
[CrossRef]

Bonifacio, R.

R. Bonifacio, L. A. Lugiato, Opt. Commun. 19, 172 (1976).
[CrossRef]

Cooper, J.

R. J. Ballagh, J. Cooper, M. W. Hamilton, W. J. Sandle, D. M. Warrington, Opt. Commun. 37, 143 (1981).
[CrossRef]

Drummond, P. D.

P. D. Drummond, IEEE J. Quantum Electron. QE-17, 301 (1981).
[CrossRef]

Gallagher, A.

W. J. Sandle, A. Gallagher, Phys. Rev. A 24, 2017 (1981).
[CrossRef]

Gibbs, H. M.

For a review of the theoretical and experimental work in this field, see the article by H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, Opt. News 5(3), 6–12 (1979).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976).
[CrossRef]

Grant, D. E.

H. J. Kimble, D. E. Grant, J. Opt. Soc. Am. 12, 1639(A) (1981).

Hamilton, M. W.

R. J. Ballagh, J. Cooper, M. W. Hamilton, W. J. Sandle, D. M. Warrington, Opt. Commun. 37, 143 (1981).
[CrossRef]

Kimble, H. J.

H. J. Kimble, D. E. Grant, J. Opt. Soc. Am. 12, 1639(A) (1981).

Lugiato, L. A.

R. Bonifacio, L. A. Lugiato, Opt. Commun. 19, 172 (1976).
[CrossRef]

MacGillivray, W. R.

K. G. Weyer, H. Widenmann, M. Rateike, W. R. MacGillivray, P. Meystre, H. Walther, Opt. Commun. 37, 426 (1981).
[CrossRef]

McCall, S. L.

For a review of the theoretical and experimental work in this field, see the article by H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, Opt. News 5(3), 6–12 (1979).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976).
[CrossRef]

S. L. McCall, Phys. Rev. A 9, 1515 (1974).
[CrossRef]

Meystre, P.

K. G. Weyer, H. Widenmann, M. Rateike, W. R. MacGillivray, P. Meystre, H. Walther, Opt. Commun. 37, 426 (1981).
[CrossRef]

Rateike, M.

K. G. Weyer, H. Widenmann, M. Rateike, W. R. MacGillivray, P. Meystre, H. Walther, Opt. Commun. 37, 426 (1981).
[CrossRef]

Sandle, W. J.

W. J. Sandle, A. Gallagher, Phys. Rev. A 24, 2017 (1981).
[CrossRef]

R. J. Ballagh, J. Cooper, M. W. Hamilton, W. J. Sandle, D. M. Warrington, Opt. Commun. 37, 143 (1981).
[CrossRef]

Seidel, H.

H. Seidel, U.S. Patent No.3,610,731 (October5, 1971); A. Szöke, V. Daneu, J. Goldhar, N. A. Kurnit, Appl. Phys. Lett. 15, 376 (1969); J. W. Austin, L. G. DeShazer, J. Opt. Soc. Am. 61, 650 (1971); E. Spiller, J. Opt. Soc. Am. 61, 669 (1971), J. Appl. Phys. 43, 1673 (1972).
[CrossRef]

Smith, P. W.

P. W. Smith, ed., IEEE J. Quantum Electron., Special Issue on Optical Bistability, QE-17 (1981).

Venkatesan, T. N. C.

For a review of the theoretical and experimental work in this field, see the article by H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, Opt. News 5(3), 6–12 (1979).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976).
[CrossRef]

Walther, H.

K. G. Weyer, H. Widenmann, M. Rateike, W. R. MacGillivray, P. Meystre, H. Walther, Opt. Commun. 37, 426 (1981).
[CrossRef]

Warrington, D. M.

R. J. Ballagh, J. Cooper, M. W. Hamilton, W. J. Sandle, D. M. Warrington, Opt. Commun. 37, 143 (1981).
[CrossRef]

Weyer, K. G.

K. G. Weyer, H. Widenmann, M. Rateike, W. R. MacGillivray, P. Meystre, H. Walther, Opt. Commun. 37, 426 (1981).
[CrossRef]

Widenmann, H.

K. G. Weyer, H. Widenmann, M. Rateike, W. R. MacGillivray, P. Meystre, H. Walther, Opt. Commun. 37, 426 (1981).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. W. Smith, ed., IEEE J. Quantum Electron., Special Issue on Optical Bistability, QE-17 (1981).

P. D. Drummond, IEEE J. Quantum Electron. QE-17, 301 (1981).
[CrossRef]

J. Opt. Soc. Am. (1)

H. J. Kimble, D. E. Grant, J. Opt. Soc. Am. 12, 1639(A) (1981).

Opt. Commun. (4)

J. A. Abate, Opt. Commun. 10, 269 (1974).
[CrossRef]

R. J. Ballagh, J. Cooper, M. W. Hamilton, W. J. Sandle, D. M. Warrington, Opt. Commun. 37, 143 (1981).
[CrossRef]

K. G. Weyer, H. Widenmann, M. Rateike, W. R. MacGillivray, P. Meystre, H. Walther, Opt. Commun. 37, 426 (1981).
[CrossRef]

R. Bonifacio, L. A. Lugiato, Opt. Commun. 19, 172 (1976).
[CrossRef]

Opt. News (1)

For a review of the theoretical and experimental work in this field, see the article by H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, Opt. News 5(3), 6–12 (1979).
[CrossRef]

Phys. Rev. A (2)

S. L. McCall, Phys. Rev. A 9, 1515 (1974).
[CrossRef]

W. J. Sandle, A. Gallagher, Phys. Rev. A 24, 2017 (1981).
[CrossRef]

Phys. Rev. Lett. (1)

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976).
[CrossRef]

Other (2)

C. M. Bowden, M. Ciftan, H. R. Robl, eds., Optical Bistability (Plenum, New York, 1981).
[CrossRef]

H. Seidel, U.S. Patent No.3,610,731 (October5, 1971); A. Szöke, V. Daneu, J. Goldhar, N. A. Kurnit, Appl. Phys. Lett. 15, 376 (1969); J. W. Austin, L. G. DeShazer, J. Opt. Soc. Am. 61, 650 (1971); E. Spiller, J. Opt. Soc. Am. 61, 669 (1971), J. Appl. Phys. 43, 1673 (1972).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Transmitted power PT (lower trace) and intracavity fluorescence IF (upper trace) as functions of incident laser power PI for zero atomic and cavity detunings. Note that IF increases in a downward direction. The resonant atomic-absorption coefficient αl is 1.0, and the incident switching powers P1 and P2 are 0.63 and 1.0 mW, respectively.

Fig. 2
Fig. 2

Normalized incident switching intensities Y versus atomic cooperativity C for zero atomic and cavity detunings. Switching from the lower to upper branch of the hysteresis cycle is indicated by crosses; from the upper to lower branch, by open circles. A filled circle corresponds to the intensity of largest differential gain in the input–output characteristics before the onset of bistability. Each set of points has been obtained from a photograph such as that in Fig. 1. Relative uncertainties are indicated at several points. The determination of Y and C for the data is discussed in the text. The full curve is the theoretical result of Drummond12 with Gaussian inhomogeneous broadening.

Fig. 3
Fig. 3

From the same data set as in Fig. 2, the ratio R = Y2/Y1 of incident switching intensities is plotted as a function of atomic cooperativity C. Below a critical value of C, Instability is not observed, and R =1.0. The dashed lines are from Drummond12 for (a) the case of homogeneous broadening and (b) Gaussian inhomogeneous broadening resulting in a total absorption width of 30 MHz.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C α l F 2 π ,
Y 3 P I π ω 0 2 I S .
= T π F ,

Metrics