Abstract

The performance of sensors, including optical fiber sensors, is commonly limited by the tradeoff between a large dynamic range and a high resolution. In this Letter, in order to optimize both, we propose an inline multimode interferometer sensor based on a suspended-core microstructured optical fiber. Due to the existence of multiple pairs of mode interferences, the transmission spectrum of the interferometer consists of dense fringes modulated by a lower envelope. Since these mode interferences take place in the uniform material with the same length, the dense fringes and the lower envelope have an identical sensing response without crosstalk. Hence, the sensor integrates the large dynamic range of the lower envelope and the high resolution of the dense fringes. Strain-sensing performance is investigated to validate the characteristic of the large dynamic range and the high resolution of the proposed sensor. The dynamic range, theoretically 0–9200 µɛ, is 12 times larger than for the dense fringes, and the resolution is 17.5 times higher than for the lower envelope.

© 2020 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution, large dynamic range fiber-optic thermometer with cascaded Fabry–Perot cavities

Guigen Liu, Qiwen Sheng, Weilin Hou, and Ming Han
Opt. Lett. 41(21) 5134-5137 (2016)

Parallel structured optical fiber in-line Fabry–Perot interferometers for high temperature sensing

X. L. Cui, Hua Zhang, and D. N. Wang
Opt. Lett. 45(3) 726-729 (2020)

High-spatial-resolution fiber-optic distributed acoustic sensor based on Φ-OFDR with enhanced crosstalk suppression

He Li, Qingwen Liu, Dian Chen, Yuanpeng Deng, and Zuyuan He
Opt. Lett. 45(2) 563-566 (2020)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription